convex polytopes
Recently Published Documents


TOTAL DOCUMENTS

407
(FIVE YEARS 72)

H-INDEX

29
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Muhammad Javaid ◽  
Hassan Zafar ◽  
Amer Aljaedi ◽  
Abdulaziz Mohammad Alanazi

Metric dimension is one of the distance-based parameter which is frequently used to study the structural and chemical properties of the different networks in the various fields of computer science and chemistry such as image processing, pattern recognition, navigation, integer programming, optimal transportation models, and drugs discovery. In particular, it is used to find the locations of robots with respect to shortest distance among the destinations, minimum consumption of time, and lesser number of the utilized nodes and to characterize the chemical compounds having unique presentation in molecular networks. The fractional metric dimension being a latest developed weighted version of the metric dimension is used in the distance-related problems of the aforementioned fields to find their nonintegral optimal solutions. In this paper, we have formulated the local resolving neighborhoods with their cardinalities for all the edges of the convex polytopes networks to compute their local fractional metric dimensions in the form of exact values and sharp bounds. Moreover, the boundedness of all the obtained results is also proved.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Liying Pan ◽  
Muhammad Ahmad ◽  
Zohaib Zahid ◽  
Sohail Zafar

A source detection problem in complex networks has been studied widely. Source localization has much importance in order to model many real-world phenomena, for instance, spreading of a virus in a computer network, epidemics in human beings, and rumor spreading on the internet. A source localization problem is to identify a node in the network that gives the best description of the observed diffusion. For this purpose, we select a subset of nodes with least size such that the source can be uniquely located. This is equivalent to find the minimal doubly resolving set of a network. In this article, we have computed the double metric dimension of convex polytopes R n and Q n by describing their minimal doubly resolving sets.


2021 ◽  
Vol 104 (4) ◽  
pp. 003685042110534
Author(s):  
Hassan Raza ◽  
Naveed Iqbal ◽  
Hamda Khan ◽  
Thongchai Botmart

Let [Formula: see text] be a connected graph. A locating-total dominating set in a graph G is a total dominating set S of a G, for every pair of vertices [Formula: see text], such that [Formula: see text]. The minimum cardinality of a locating-total dominating set is called locating-total domination number and represented as [Formula: see text]. In this paper, locating-total domination number is determined for some cycle-related graphs. Furthermore, some well-known graphs of convex polytopes from the literature are also considered for the locating-total domination number.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
M. K. Aslam ◽  
Muhammad Javaid ◽  
Q. Zhu ◽  
Abdul Raheem

In order to identify the basic structural properties of a network such as connectedness, centrality, modularity, accessibility, clustering, vulnerability, and robustness, we need distance-based parameters. A number of tools like these help computer and chemical scientists to resolve the issues of informational and chemical structures. In this way, the related branches of aforementioned sciences are also benefited with these tools as well. In this paper, we are going to study a symmetric class of networks called convex polytopes for the upper and lower bounds of fractional metric dimension (FMD), where FMD is a latest developed mathematical technique depending on the graph-theoretic parameter of distance. Apart from that, we also have improved the lower bound of FMD from unity for all the arbitrary connected networks in its general form.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xuewu Zuo ◽  
Abid Ali ◽  
Gohar Ali ◽  
Muhammad Kamran Siddiqui ◽  
Muhammad Tariq Rahim ◽  
...  

Metric dimension is the extraction of the affine dimension (obtained from Euclidean space E d ) to the arbitrary metric space. A family ℱ = G n of connected graphs with n ≥ 3 is a family of constant metric dimension if dim G = k (some constant) for all graphs in the family. Family ℱ has bounded metric dimension if dim G n ≤ M , for all graphs in ℱ . Metric dimension is used to locate the position in the Global Positioning System (GPS), optimization, network theory, and image processing. It is also used for the location of hospitals and other places in big cities to trace these places. In this paper, we analyzed the features and metric dimension of generalized convex polytopes and showed that this family belongs to the family of bounded metric dimension.


2021 ◽  
Vol 31 (3) ◽  
pp. 1-37
Author(s):  
Jannik Hüls ◽  
Carina Pilch ◽  
Patricia Schinke ◽  
Henner Niehaus ◽  
Joanna Delicaris ◽  
...  

Hybrid Petri nets have been extended to include general transitions that fire after a randomly distributed amount of time. With a single general one-shot transition the state space and evolution over time can be represented either as a Parametric Location Tree or as a Stochastic Time Diagram . Recent work has shown that both representations can be combined and then allow multiple stochastic firings. This work presents an algorithm for building the Parametric Location Tree with multiple general transition firings and shows how its transient probability distribution can be computed using multi-dimensional integration. We discuss the (dis-)advantages of an interval arithmetic and a geometric approach to compute the areas of integration. Furthermore, we provide details on how to perform a Monte Carlo integration either directly on these intervals or convex polytopes, or after transformation to standard simplices. A case study on a battery-backup system shows the feasibility of the approach and discusses the performance of the different integration approaches.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1689
Author(s):  
Odysseas Kosmas ◽  
Pieter Boom ◽  
Andrey P. Jivkov

The deformation of a solid due to changing boundary conditions is described by a deformation gradient in Euclidean space. If the deformation process is reversible (conservative), the work done by the changing boundary conditions is stored as potential (elastic) energy, a function of the deformation gradient invariants. Based on this, in the present work we built a “discrete energy model” that uses maps between nodal positions of a discrete mesh linked with the invariants of the deformation gradient via standard barycentric coordinates. A special derivation is provided for domains tessellated by tetrahedrons, where the energy functionals are constrained by prescribed boundary conditions via Lagrange multipliers. The analysis of these domains is performed via energy minimisation, where the constraints are eliminated via pre-multiplication of the discrete equations by a discrete null-space matrix of the constraint gradients. Numerical examples are provided to verify the accuracy of the proposed technique. The standard barycentric coordinate system in this work is restricted to three-dimensional (3-D) convex polytopes. We show that for an explicit energy expression, applicable also to non-convex polytopes, the general barycentric coordinates constitute fundamental tools. We define, in addition, the discrete energy via a gradient for general polytopes, which is a natural extension of the definition for discrete domains tessellated by tetrahedra. We, finally, prove that the resulting expressions can consistently describe the deformation of solids.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Sakander Hayat ◽  
Muhammad Yasir Hayat Malik ◽  
Ali Ahmad ◽  
Suliman Khan ◽  
Faisal Yousafzai ◽  
...  

A convex polytope is the convex hull of a finite set of points in the Euclidean space ℝ n . By preserving the adjacency-incidence relation between vertices of a polytope, its structural graph is constructed. A graph is called Hamilton-connected if there exists at least one Hamiltonian path between any of its two vertices. The detour index is defined to be the sum of the lengths of longest distances, i.e., detours between vertices in a graph. Hamiltonian and Hamilton-connected graphs have diverse applications in computer science and electrical engineering, whereas the detour index has important applications in chemistry. Checking whether a graph is Hamilton-connected and computing the detour index of an arbitrary graph are both NP-complete problems. In this paper, we study these problems simultaneously for certain families of convex polytopes. We construct two infinite families of Hamilton-connected convex polytopes. Hamilton-connectivity is shown by constructing Hamiltonian paths between any pair of vertices. We then use the Hamilton-connectivity to compute the detour index of these families. A family of non-Hamilton-connected convex polytopes has also been constructed to show that not all convex polytope families are Hamilton-connected.


Sign in / Sign up

Export Citation Format

Share Document