aerosol mass concentration
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 28)

H-INDEX

24
(FIVE YEARS 3)

MAUSAM ◽  
2021 ◽  
Vol 42 (4) ◽  
pp. 367-374
Author(s):  
SAYED M. EL-SHAZLY ◽  
ABDELAZEEM M. ABDELMAGEED ◽  
GAMILY HASSAN ◽  
BADRY NOBI

The dependence of the atmospheric extinction on aerosols concentration, temperature and wind speed is demonstrated. The atmospheric extinction was determined by measuring the transmission loss of radiation from alight source across 36 cm path with a photocell detector Conclusion include a general association of high extinction with high aerosols concentration, temperature and wind speed, but there are no one-to-one relationships. A correlation study between the extinction coefficient and each of these parameters was performed.  


2021 ◽  
Vol 4 ◽  
pp. 134-148
Author(s):  
D.P. Gubanova ◽  
◽  
A.A. Vinogradova ◽  
A.I. Skorokhod ◽  
M.A. Iordanskii ◽  
...  

The paper analyzes the composition of surface aerosol close to the local intense anthropogenic source of pollution associated with the active phase of demolition of multistorey buildings in the center of Moscow. An abnormal increase in the daytime PM10 aerosol particle concentration to 5 MPC for daily values and to 14 MPC for maximum single values was reinforced by unfavorable meteorological conditions in the middle of July 2021. Preliminary estimation of the power of the dust aerosol source and its effect on the aerosol air pollution in nearby areas of the city is performed. The extreme and background values of the aerosol mass concentration, its elemental composition and particle size distribution during this period are determined. It is necessary to take into account such point pollutant sources in estimating and forecasting environmental conditions in a densely populated city. Keywords: surface aerosol, local anthropogenic source, Moscow, aerosol mass concentration, elemental composition, meteorological conditions


Author(s):  
D.P. Gubanova ◽  
◽  
A.A. Vinogradova ◽  
A.I. Skorokhod ◽  
M.A. Iordanskii ◽  
...  

The paper analyzes the composition of surface aerosol close to the local intense anthropogenic source of pollution associated with the active phase of demolition of multistorey buildings in the center of Moscow. An abnormal increase in the daytime PM10 aerosol particle concentration to 5 MPC for daily values and to 14 MPC for maximum single values was reinforced by unfavorable meteorological conditions in the middle of July 2021. Preliminary estimation of the power of the dust aerosol source and its effect on the aerosol air pollution in nearby areas of the city is performed. The extreme and background values of the aerosol mass concentration, its elemental composition and particle size distribution during this period are determined. It is necessary to take into account such point pollutant sources in estimating and forecasting environmental conditions in a densely populated city. Keywords: surface aerosol, local anthropogenic source, Moscow, aerosol mass concentration, elemental composition, meteorological conditions


2021 ◽  
Author(s):  
Hui Wan ◽  
Kai Zhang ◽  
Philip J. Rasch ◽  
Vincent E. Larson ◽  
Xubin Zeng ◽  
...  

Abstract. Numerical models used in weather and climate prediction take into account a comprehensive set of atmospheric processes such as the resolved and unresolved fluid dynamics, radiative transfer, cloud and aerosol life cycles, and mass or energy exchanges with the Earth's surface. In order to identify model deficiencies and improve predictive skills, it is important to obtain process-level understanding of the interactions between different processes. Conditional sampling and budget analysis are powerful tools for process-oriented model evaluation, but they often require tedious ad hoc coding and large amounts of instantaneous model output, resulting in inefficient use of human and computing resources. This paper presents an online diagnostic tool that addresses this challenge by monitoring model variables in a generic manner as they evolve within the time integration cycle. The tool is convenient to use. It allows users to select sampling conditions and specify monitored variables at run time. Both the evolving values of the model variables and their increments caused by different atmospheric processes can be monitored and archived. Online calculation of vertical integrals is also supported. Multiple sampling conditions can be monitored in a single simulation in combination with unconditional sampling. The paper explains in detail the design and implementation of the tool in the Energy Exascale Earth System Model (E3SM) version 1. The usage is demonstrated through three examples: a global budget analysis of dust aerosol mass concentration, a composite analysis of sea salt emission and its dependency on surface wind speed, and a conditionally sampled relative humidity budget. The tool is expected to be easily portable to closely related atmospheric models that use the same or similar data structures and time integration methods.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5725
Author(s):  
Yong-Hyun Kim ◽  
Mi-Kyung Song ◽  
Kyuhong Lee

This study evaluates the behavioral characteristics of components (methylisothiazolinone (MIT) and chloromethylisothiazolinone (CMIT)) contained in disinfectant solutions when they convert to liquid aerosols. The analytical method for MIT and CMIT quantitation was established and optimized using sorbent tube/thermal desorber-gas chromatography-mass spectrometry system; their behavioral characteristics are discussed using the quantitative results of these aerosols under different liquid aerosol generation conditions. MIT and CMIT showed different behavioral characteristics depending on the aerosol mass concentration and sampling time (sampling volume). When the disinfectant solution was initially aerosolized, MIT and CMIT were primarily collected on glass filter (MIT = 91.8 ± 10.6% and CMIT = 90.6 ± 5.18%), although when the generation and filter sampling volumes of the aerosols increased to 30 L, the relative proportions collected on the filter decreased (MIT = 79.0 ± 12.0% and CMIT = 39.7 ± 8.35%). Although MIT and CMIT had relatively high vapor pressure, in liquid aerosolized state, they primarily accumulated on the filter and exhibited particulate behavior. Their relative proportions in the aerosol were different from those in disinfectant solution. In the aerosol with mass concentration of ≤5 mg m−3, the relative proportion deviations of MIT and CMIT were large; when the mass concentration of the aerosol increased, their relative proportions constantly converged at a lower level than those in the disinfectant solution. Hence, it can be concluded that the behavioral characteristics and relative proportions need to be considered to perform the quantitative analysis of the liquid aerosols and evaluate various toxic effects using the quantitative data.


2021 ◽  
Author(s):  
James R. Ouimette ◽  
William C. Malm ◽  
Bret A. Schichtel ◽  
Patrick J. Sheridan ◽  
Elisabeth Andrews ◽  
...  

Abstract. The Plantower PMS5003 sensors (PA-PMS) used in the PurpleAir (PA) monitor PA-II-SD configuration are equivalent to cell-reciprocal nephelometers using a 657 nm perpendicularly polarized light source that integrates light scattering from 18 to 166 degrees. Yearlong field data at the National Oceanic and Atmospheric Administration’s (NOAA) Mauna Loa Observatory (MLO) and Boulder Table Mountain (BOS) sites show that the 1 h average of the PA-PMS first size channel, labeled “> 0.3 μm” (“CH1”) is highly correlated with submicrometer aerosol scattering coefficients at the 550 nm and 700 nm wavelengths measured by the TSI 3563 integrating nephelometer, from 0.4 Mm−1 to 500 Mm−1. This corresponds to an hourly average submicrometer aerosol mass concentration of approximately 0.2 to 200 ug m−3. A physical-optical model of the PA-PMS is developed to estimate light intensity on the photodiode, accounting for angular truncation as a function of particle size. Predictions are then compared with yearlong fine aerosol size distribution and scattering coefficient field data at the BOS site. It is shown that CH1 is linearly proportional to the model-predicted intensity of the light scattered by particles in the PA-PMS laser to its photodiode over 4 orders of magnitude. This is consistent with CH1 being a measure of the scattering coefficient and not the particle number concentration or particulate matter concentration. Field data at BOS confirm the model prediction that the ratio of CH1 to the scattering coefficient would be highest for aerosols with median scattering diameters < 0.3 μm. The PA-PMS detects aerosols smaller than 0.3 μm diameter in proportion to their contribution to the scattering coefficient. The model predicts that the PA-PMS response to particles > 0.3 μm decreases relative to an ideal nephelometer by about 75 % for particle diameters ≥ 1.0 μm. This is a result of using a laser that is polarized, the angular truncation of the scattered light, and particle loss in the instrument before reaching the laser. The results of this study indicate that the PA-PMS is not an optical particle counter and that its six size fractions are not an accurate representation of particle size distribution. The relationship between the PA-PMS 1 h average CH1 and bsp1, the scattering coefficient in Mm−1 due to particles below 1 μm aerodynamic diameter, at wavelength 550 nanometers, is found to be bsp1 = 0.015 ± 2.07 × 10−5 × CH1, for relative humidity below 40 %. The coefficient of determination R2 is 0.97. This suggests that the low-cost and widely used PA monitors can be used to measure and predict the aerosol light scattering coefficient in the mid-visible nearly as well as integrating nephelometers.


2021 ◽  
Vol 8 (2) ◽  
pp. 81-104
Author(s):  
Aguh Akeh Nug ◽  
Cheo Emmanuel Suh ◽  
Johan Boman ◽  
Godwin Sendze Yinda

Air quality progressively deteriorates as urbanization, motorization and economic activities increase. Aerosol particles smaller than 2.5µm (PM2.5), a widespread form of pollution is an emergent threat to human health, the environment, quality of life, and the world’s climate. The composition of these particles is an important aspect of interest not only related to possible health and environmental effects of the elemental content but the elemental determination which also adds valuable information for source apportionment. This study investigates and evaluates the level of PM2.5 in Douala, Cameroon. Particles were collected using a cyclone that separates the PM2.5 from the air stream and impacts them on polycarbonate filters which were changed every 24-hour sampling period. Samples were analyzed for particulate mass concentration, black carbon (BC) and trace elements. Trace element analysis was done by EDXRF (energy dispersive x-ray fluorescence spectroscopy). Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Br, Sr, and Pb were identified and quantified for samples. Local meteorology was used to study variations in PM2.5 mass concentrations. Possible sources for the pollutants were also investigated. The mean particle mass concentration was 252 ± 130μg/m3 while BC attained a maximum of 6.993μg/m3. The influence of leaded gasoline was inferred while combustion and road traffic were identified as the major anthropogenic sources. Trends in meteorological parameters were influenced by thunderstorms. Sea spray was identified as another major contributor to aerosol PM. This study highlights high pollution levels in Douala. Keywords: PM2.5, air quality, aerosol, mass concentration, source identification


Sign in / Sign up

Export Citation Format

Share Document