fpt algorithm
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 21)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
Vol 69 (1) ◽  
pp. 1-46
Author(s):  
Édouard Bonnet ◽  
Eun Jung Kim ◽  
Stéphan Thomassé ◽  
Rémi Watrigant

Inspired by a width invariant defined on permutations by Guillemot and Marx [SODA’14], we introduce the notion of twin-width on graphs and on matrices. Proper minor-closed classes, bounded rank-width graphs, map graphs, K t -free unit d -dimensional ball graphs, posets with antichains of bounded size, and proper subclasses of dimension-2 posets all have bounded twin-width. On all these classes (except map graphs without geometric embedding) we show how to compute in polynomial time a sequence of d -contractions , witness that the twin-width is at most d . We show that FO model checking, that is deciding if a given first-order formula ϕ evaluates to true for a given binary structure G on a domain D , is FPT in |ϕ| on classes of bounded twin-width, provided the witness is given. More precisely, being given a d -contraction sequence for G , our algorithm runs in time f ( d ,|ϕ |) · |D| where f is a computable but non-elementary function. We also prove that bounded twin-width is preserved under FO interpretations and transductions (allowing operations such as squaring or complementing a graph). This unifies and significantly extends the knowledge on fixed-parameter tractability of FO model checking on non-monotone classes, such as the FPT algorithm on bounded-width posets by Gajarský et al. [FOCS’15].


Author(s):  
Mohsen Alambardar Meybodi

A set [Formula: see text] of a graph [Formula: see text] is called an efficient dominating set of [Formula: see text] if every vertex [Formula: see text] has exactly one neighbor in [Formula: see text], in other words, the vertex set [Formula: see text] is partitioned to some circles with radius one such that the vertices in [Formula: see text] are the centers of partitions. A generalization of this concept, introduced by Chellali et al. [k-Efficient partitions of graphs, Commun. Comb. Optim. 4 (2019) 109–122], is called [Formula: see text]-efficient dominating set that briefly partitions the vertices of graph with different radiuses. It leads to a partition set [Formula: see text] such that each [Formula: see text] consists a center vertex [Formula: see text] and all the vertices in distance [Formula: see text], where [Formula: see text]. In other words, there exist the dominators with various dominating powers. The problem of finding minimum set [Formula: see text] is called the minimum [Formula: see text]-efficient domination problem. Given a positive integer [Formula: see text] and a graph [Formula: see text], the [Formula: see text]-efficient Domination Decision problem is to decide whether [Formula: see text] has a [Formula: see text]-efficient dominating set of cardinality at most [Formula: see text]. The [Formula: see text]-efficient Domination Decision problem is known to be NP-complete even for bipartite graphs [M. Chellali, T. W. Haynes and S. Hedetniemi, k-Efficient partitions of graphs, Commun. Comb. Optim. 4 (2019) 109–122]. Clearly, every graph has a [Formula: see text]-efficient dominating set but it is not correct for efficient dominating set. In this paper, we study the following: [Formula: see text]-efficient domination problem set is NP-complete even in chordal graphs. A polynomial-time algorithm for [Formula: see text]-efficient domination in trees. [Formula: see text]-efficient domination on sparse graphs from the parametrized complexity perspective. In particular, we show that it is [Formula: see text]-hard on d-degenerate graphs while the original dominating set has Fixed Parameter Tractable (FPT) algorithm on d-degenerate graphs. [Formula: see text]-efficient domination on nowhere-dense graphs is FPT.


2021 ◽  
Vol 24 (3) ◽  
pp. 1-22
Author(s):  
Jason Crampton ◽  
Gregory Z. Gutin ◽  
Diptapriyo Majumdar

User authorization queries in the context of role-based access control have attracted considerable interest in the past 15 years. Such queries are used to determine whether it is possible to allocate a set of roles to a user that enables the user to complete a task, in the sense that all the permissions required to complete the task are assigned to the roles in that set. Answering such a query, in general, must take into account a number of factors, including, but not limited to, the roles to which the user is assigned and constraints on the sets of roles that can be activated. Answering such a query is known to be NP-hard. The presence of multiple parameters and the need to find efficient and exact solutions to the problem suggest that a multi-variate approach will enable us to better understand the complexity of the user authorization query problem (UAQ). In this article, we establish a number of complexity results for UAQ. Specifically, we show the problem remains hard even when quite restrictive conditions are imposed on the structure of the problem. Our fixed-parameter tractable (FPT) results show that we have to use either a parameter with potentially quite large values or quite a restricted version of UAQ. Moreover, our second FPT algorithm is complex and requires sophisticated, state-of-the-art techniques. In short, our results show that it is unlikely that all variants of UAQ that arise in practice can be solved reasonably quickly in general.


Author(s):  
Péter Madarasi

AbstractThis paper introduces the d-distance matching problem, in which we are given a bipartite graph $$G=(S,T;E)$$ G = ( S , T ; E ) with $$S=\{s_1,\dots ,s_n\}$$ S = { s 1 , ⋯ , s n } , a weight function on the edges and an integer $$d\in \mathbb Z_+$$ d ∈ Z + . The goal is to find a maximum-weight subset $$M\subseteq E$$ M ⊆ E of the edges satisfying the following two conditions: (i) the degree of every node of S is at most one in M, (ii) if $$s_it,s_jt\in M$$ s i t , s j t ∈ M , then $$|j-i|\ge d$$ | j - i | ≥ d . This question arises naturally, for example, in various scheduling problems. We show that the problem is NP-complete in general and admits a simple 3-approximation. We give an FPT algorithm parameterized by d and also show that the case when the size of T is constant can be solved in polynomial time. From an approximability point of view, we show that the integrality gap of the natural integer programming model is at most $$2-\frac{1}{2d-1}$$ 2 - 1 2 d - 1 , and give an LP-based approximation algorithm for the weighted case with the same guarantee. A combinatorial $$(2-\frac{1}{d})$$ ( 2 - 1 d ) -approximation algorithm is also presented. Several greedy approaches are considered, and a local search algorithm is described that achieves an approximation ratio of $$3/2+\epsilon $$ 3 / 2 + ϵ for any constant $$\epsilon >0$$ ϵ > 0 in the unweighted case. The novel approaches used in the analysis of the integrality gap and the approximation ratio of locally optimal solutions might be of independent combinatorial interest.


Algorithmica ◽  
2021 ◽  
Author(s):  
Giordano Da Lozzo ◽  
David Eppstein ◽  
Michael T. Goodrich ◽  
Siddharth Gupta

AbstractFor a clustered graph, i.e, a graph whose vertex set is recursively partitioned into clusters, the C-Planarity Testing problem asks whether it is possible to find a planar embedding of the graph and a representation of each cluster as a region homeomorphic to a closed disk such that (1) the subgraph induced by each cluster is drawn in the interior of the corresponding disk, (2) each edge intersects any disk at most once, and (3) the nesting between clusters is reflected by the representation, i.e., child clusters are properly contained in their parent cluster. The computational complexity of this problem, whose study has been central to the theory of graph visualization since its introduction in 1995 [Feng, Cohen, and Eades, Planarity for clustered graphs, ESA’95], has only been recently settled [Fulek and Tóth, Atomic Embeddability, Clustered Planarity, and Thickenability, to appear at SODA’20]. Before such a breakthrough, the complexity question was still unsolved even when the graph has a prescribed planar embedding, i.e, for embedded clustered graphs. We show that the C-Planarity Testing problem admits a single-exponential single-parameter FPT (resp., XP) algorithm for embedded flat (resp., non-flat) clustered graphs, when parameterized by the carving-width of the dual graph of the input. These are the first FPT and XP algorithms for this long-standing open problem with respect to a single notable graph-width parameter. Moreover, the polynomial dependency of our FPT algorithm is smaller than the one of the algorithm by Fulek and Tóth. In particular, our algorithm runs in quadratic time for flat instances of bounded treewidth and bounded face size. To further strengthen the relevance of this result, we show that an algorithm with running time O(r(n)) for flat instances whose underlying graph has pathwidth 1 would result in an algorithm with running time O(r(n)) for flat instances and with running time $$O(r(n^2) + n^2)$$ O ( r ( n 2 ) + n 2 ) for general, possibly non-flat, instances.


2021 ◽  
Vol vol. 23 no. 1 (Discrete Algorithms) ◽  
Author(s):  
Louis Dublois ◽  
Michael Lampis ◽  
Vangelis Th. Paschos

A mixed dominating set is a collection of vertices and edges that dominates all vertices and edges of a graph. We study the complexity of exact and parameterized algorithms for \textsc{Mixed Dominating Set}, resolving some open questions. In particular, we settle the problem's complexity parameterized by treewidth and pathwidth by giving an algorithm running in time $O^*(5^{tw})$ (improving the current best $O^*(6^{tw})$), as well as a lower bound showing that our algorithm cannot be improved under the Strong Exponential Time Hypothesis (SETH), even if parameterized by pathwidth (improving a lower bound of $O^*((2 - \varepsilon)^{pw})$). Furthermore, by using a simple but so far overlooked observation on the structure of minimal solutions, we obtain branching algorithms which improve both the best known FPT algorithm for this problem, from $O^*(4.172^k)$ to $O^*(3.510^k)$, and the best known exponential-time exact algorithm, from $O^*(2^n)$ and exponential space, to $O^*(1.912^n)$ and polynomial space. Comment: This paper has been accepted to IPEC 2020


Algorithmica ◽  
2021 ◽  
Author(s):  
Édouard Bonnet ◽  
Nidhi Purohit

AbstractA resolving set S of a graph G is a subset of its vertices such that no two vertices of G have the same distance vector to S. The Metric Dimension problem asks for a resolving set of minimum size, and in its decision form, a resolving set of size at most some specified integer. This problem is NP-complete, and remains so in very restricted classes of graphs. It is also W[2]-complete with respect to the size of the solution. Metric Dimension has proven elusive on graphs of bounded treewidth. On the algorithmic side, a polynomial time algorithm is known for trees, and even for outerplanar graphs, but the general case of treewidth at most two is open. On the complexity side, no parameterized hardness is known. This has led several papers on the topic to ask for the parameterized complexity of Metric Dimension with respect to treewidth. We provide a first answer to the question. We show that Metric Dimension parameterized by the treewidth of the input graph is W[1]-hard. More refinedly we prove that, unless the Exponential Time Hypothesis fails, there is no algorithm solving Metric Dimension in time $$f(\text {pw})n^{o(\text {pw})}$$ f ( pw ) n o ( pw ) on n-vertex graphs of constant degree, with $$\text {pw}$$ pw the pathwidth of the input graph, and f any computable function. This is in stark contrast with an FPT algorithm of Belmonte et al. (SIAM J Discrete Math 31(2):1217–1243, 2017) with respect to the combined parameter $$\text {tl}+\Delta$$ tl + Δ , where $$\text {tl}$$ tl is the tree-length and $$\Delta$$ Δ the maximum-degree of the input graph.


Author(s):  
Bengt J. Nilsson ◽  
Paweł Żyliński

We present new results on two types of guarding problems for polygons. For the first problem, we present an optimal linear time algorithm for computing a smallest set of points that guard a given shortest path in a simple polygon having [Formula: see text] edges. We also prove that in polygons with holes, there is a constant [Formula: see text] such that no polynomial-time algorithm can solve the problem within an approximation factor of [Formula: see text], unless P=NP. For the second problem, we present a [Formula: see text]-FPT algorithm for computing a shortest tour that sees [Formula: see text] specified points in a polygon with [Formula: see text] holes. We also present a [Formula: see text]-FPT approximation algorithm for this problem having approximation factor [Formula: see text]. In addition, we prove that the general problem cannot be polynomially approximated better than by a factor of [Formula: see text], for some constant [Formula: see text], unless P [Formula: see text]NP.


2021 ◽  
pp. 104708
Author(s):  
Qilong Feng ◽  
Shaohua Li ◽  
Xiangzhong Meng ◽  
Jianxin Wang

Sign in / Sign up

Export Citation Format

Share Document