earthquake hazard assessment
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 26)

H-INDEX

12
(FIVE YEARS 2)

Solid Earth ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 2539-2551
Author(s):  
Luca Smeraglia ◽  
Nathan Looser ◽  
Olivier Fabbri ◽  
Flavien Choulet ◽  
Marcel Guillong ◽  
...  

Abstract. Foreland fold-and-thrust belts (FTBs) record long-lived tectono-sedimentary activity, from passive margin sedimentation, flexuring, and further evolution into wedge accretion ahead of an advancing orogen. Therefore, dating fault activity is fundamental for plate movement reconstruction, resource exploration, and earthquake hazard assessment. Here, we report U–Pb ages of syn-tectonic calcite mineralizations from four thrusts and three tear faults sampled at the regional scale across the Jura fold-and-thrust belt in the northwestern Alpine foreland (eastern France). Three regional tectonic phases are recognized in the middle Eocene–Pliocene interval: (1) pre-orogenic faulting at 48.4±1.5 and 44.7±2.6 Ma associated with the far-field effect of the Alpine or Pyrenean compression, (2) syn-orogenic thrusting at 11.4±1.1, 10.6±0.5, 9.7±1.4, 9.6±0.3, and 7.5±1.1 Ma associated with the formation of the Jura fold-and-thrust belt with possible in-sequence thrust propagation, and (3) syn-orogenic tear faulting at 10.5±0.4, 9.1±6.5, 5.7±4.7, and at 4.8±1.7 Ma including the reactivation of a pre-orogenic fault at 3.9±2.9 Ma. Previously unknown faulting events at 48.4±1.5 and 44.7±2.6 Ma predate the reported late Eocene age for tectonic activity onset in the Alpine foreland by ∼10 Myr. In addition, we date the previously inferred reactivation of pre-orogenic strike-slip faults as tear faults during Jura imbrication. The U–Pb ages document a minimal time frame for the evolution of the Jura FTB wedge by possible in-sequence thrust imbrication above the low-friction basal decollement consisting of evaporites.


Tectonics ◽  
2021 ◽  
Author(s):  
Mingkun Bai ◽  
Marie‐Luce Chevalier ◽  
Philippe Hervé Leloup ◽  
Haibing Li ◽  
Jiawei Pan ◽  
...  

2021 ◽  
Vol 13 (20) ◽  
pp. 4137
Author(s):  
Liang Zhao ◽  
Rubing Liang ◽  
Xianlin Shi ◽  
Keren Dai ◽  
Jianhua Cheng ◽  
...  

A series of small-magnitude earthquakes (Mw 2.9~Mw 4.9) occurred in Rong County, Sichuan Province, China between 30 March 2018 and December 2020, which threatened the safety of local residents. Determining the surface displacement and estimating the damage caused by these earthquakes are significant for earthquake relief, post-earthquake disaster assessment and hazard elimination. This paper integrates the Generic Atmospheric Correction Online Service (GACOS) with interferometry synthetic aperture radar (InSAR) to accurately detect the displacement of the series of small-magnitude earthquakes in Rong County based on 45 Sentinel-1 ascending/descending images acquired from January 2018 to December 2020. We analyze the influence of some factors involved in surface displacement, including earthquake magnitude, focal depth and the distance from the epicenter to the fault. The above measurement for small-magnitude earthquakes and statistics analysis for the displacement have not been performed before, so this can help better understand the displacement features of small-magnitude earthquakes, which are important for post-earthquake hazard assessment and disaster prevention.


2021 ◽  
Author(s):  
Nadaya Cubas ◽  
Philippe Agard ◽  
Roxane Tissandier

<p>Predicting the spatial extent of mega-earthquakes is an essential ingredient of earthquake hazard assessment. In subduction zones, this prediction mostly relies on geodetic observations of interseismic coupling. However, such models face spatial resolution issues and are of little help to predict full or partial ruptures of highly locked patches. Coupling models are interpreted in the framework of the rate-and-state friction laws. However, these models are too idealized to take into account the effects of a geometrically or rheologically complex plate interface. In this study, we show, from the critical taper theory and a mechanical analysis of the topography, that all recent mega-earthquakes of the Chilean subduction zone are surrounded by distributed interplate deformation emanating from either underplating or basal erosion. This long-lived plate interface deformation builds up stresses ultimately leading to earthquake nucleation. Earthquakes then propagate along a relatively smooth surface and are stopped by segments of heterogeneously distributed deformation. Our results are consistent with long-term features of the subduction margin, with observed short-term deformation as well as physical parameters of recovered subducted fragments. They also provide an explanation for the apparent mechanical segmentation of the megathrust, reconciling many seemingly contradictory observations on the short- and long-term deformation. Consequently, we propose that earthquake segmentation relates to the distribution of deformation along the plate interface and that slip deficit patterns reflect the along-dip and along-strike distribution of the plate interface deformation. Topography would therefore mirror plate interface deformation and could serve to improve earthquake rupture prediction.</p>


2021 ◽  
Author(s):  
Cvetan Sinadinovski ◽  
Lazo Pekevski ◽  
Dragana Cernih ◽  
Katerina Drogreska ◽  
Jasmina Najdovska

<p>A novel geotomography technique has been applied at the epicentral area around capitol of Macedonia - Skopje, using selected earthquakes that occurred over a period of 57 years and were recorded on temporary and permanent seismograph stations. This study will test the tomography method for the first time in investigation of the crustal shape and structures in our tectonic environment using specially designed datasets covering 1964-1967 and 2016-2020 periods.</p><p>In the initial phase, the analysis will show the potential of the geotomography application in revealing detailed velocity perturbation in the lithosphere. Then, the events are relocated in the 3-D models and new cross-sections of the crust produced by a simultaneous approach. The images can help in constraining the velocity vs depth relationship and thus can contribute towards redefinition of the earthquake zones. The results are discussed in terms of general stress and seismic regime and their temporal changes.</p><p>Better understanding of the seismicity and tectonics processes in the Skopje region will lead to an overall improvement of the earthquake hazard assessment at local and national level, as well as further integration in research programs with other geophysical methods.</p><p> </p>


2021 ◽  
Author(s):  
Zoe Shipton

<p>Patience Cowie was a truly outstanding scientist whose research spanned several disciplines of structural geology and tectonics. She made a lasting contribution to every discipline she published in and as well as academic advances, produced significant impacts in the hydrocarbon industry and earthquake hazard assessment. Her research in fault mechanics and fault population was a genuine game-changer. The implications of her work for predicting fault patterns and linkage have been crucial for the interpretation of 3D seismic data, and for examining the interplay between faults and the basins they bound and sediments they host. More recently she explored relationships between fault geometry, slip rate and recurrence intervals along seismically active faults, with important implications for earthquake hazard assessment.</p><p>Patience’s drive to constrain physical explanations of the underlying dynamics of Earth processes meant her numerical modelling was always firmly grounded in field observations. Her models incorporated the effects of stress in time and space as fault system evolved, but always underpinned by geometric and kinematic observations in the field. She loved fieldwork and her joy at the beauty of geological structures was infectious and inspiring.  </p>


2021 ◽  
Author(s):  
Luca Smeraglia ◽  
Nathan Looser ◽  
Olivier Fabbri ◽  
Flavien Choulet ◽  
Marcel Guillong ◽  
...  

Abstract. Foreland fold-and-thrust belts record long-lived tectonic-sedimentary activity, from passive margin sedimentation, flexuring, and further involvement into wedge accretion ahead of an advancing orogen. Therefore, dating fault activity is fundamental for plate movement reconstruction, resource exploration, or earthquake hazard assessment. Here, we report U-Pb ages of syntectonic calcite mineralizations from four thrusts and three tear faults sampled, at the regional scale, across the Jura fold-and-thrust belt in the northwestern Alpine foreland (eastern France). Four regional tectonic phases are recognized in the middle Eocene-middle Pleistocene interval: (1) pre-orogenic faulting at 44.7 ± 2.6 and 48.4 ± 1.5 Ma associated to the uplift of the Alpine forebulge, (2) syn-orogenic thrusting at 11.4 ± 1.1, 10.6 ± 0.5, 9.7 ± 1.4, 9.6 ± 0.3, and 7.5 ± 1.1 Ma associated to possible in-sequence thrust propagation, and (3) syn-orogenic tear faulting at 10.5 ± 0.4, 9.1 ± 6.5, 7.3 ± 1.9, 5.7 ± 4.7, 4.8 ± 1.7, and at 0.7 ± 4.2 Ma including the reactivation of a pre-orogenic fault as tear fault at 3.9 ± 2.9 Ma. Previously unknown faulting events at 44.7 ± 2.6 and 48.4 ± 1.5 Ma predate by ~ 10 Ma the accepted late Eocene age for tectonic activity onset in the Alpine foreland. In addition, we dated the previously inferred strike-slip faults re-activation as tear fault. The U-Pb ages demonstrate the long-lived tectonic history at the plate boundary between European and African plates and that the deformation observed in the foreland is directly linked to continental collision.


Author(s):  
James Jackson ◽  
Dan McKenzie ◽  
Keith Priestley

This paper is concerned with the distribution of earthquakes, particularly their depths, with the temperature of the material in which they occur, and with the significance of both for the rheology and deformation of the continental lithosphere. Earthquakes on faults are generated by the sudden release of elastic energy that accumulates during slow plate motions. The nonlinear high-temperature creep that localizes such energy accumulation is, in principle, well understood and can be described by rheological models. But the same is not true of seismogenic brittle failure, the main focus of this paper, and severely limits the insights that can be obtained by simulations derived from geodynamical modelling of lithosphere deformation. Through advances in seismic tomography, we can now make increasingly detailed maps of lithosphere thickness on the continents. The lateral variations are dramatic, with some places up to 300 km thick, and clearly relate to the geological history of the continents as well as their present-day deformation. Where the lithosphere thickness is about 120 km or less, continental earthquakes are generally confined to upper crustal material that is colder than about 350°C. Within thick lithosphere, and especially on its edges, the entire crust may be seismogenic, with earthquakes sometimes extending into the uppermost mantle if the Moho is colder than 600°C, but the continental mantle is generally aseismic. Earthquakes in the continental lower crust at 400–600°C require the crust to be anhydrous and so are a useful guide or proxy to both composition and strength. These patterns and correlations have important implications for the geological evolution of the continents. They can be seen to have influenced features as diverse as the location of post-collisional rifting; cratonic basin formation; the location, origin and timing of granulite-facies metamorphism; and the formation, longevity and strength of cratons. In addition, they have important consequences for earthquake hazard assessment in the slowly deforming edges and interiors of continental shields or platforms, where the large seismogenic thickness can host very large earthquakes. This article is part of a discussion meeting issue ‘Understanding earthquakes using the geological record'.


2020 ◽  
Author(s):  
Sumanta Pasari ◽  
Andrean VH Simanjuntak ◽  
Yogendra Sharma

Abstract Large devastating events such as earthquakes often display frequency-magnitude statistics that exhibit power-law distribution. In this study, we implement a new method of nowcasting (Rundle et al. 2016) to evaluate the current state of earthquake hazards in the seismic prone Sulawesi province, Indonesia. The nowcasting technique considers statistical behavior of small event counts, known as natural times, to infer the seismic progression of large earthquake cycles in a defined region. To develop natural time statistics in the Sulawesi Island, we employ four probability models, namely exponential, exponentiated exponential, gamma, and Weibull distribution. Statistical inference of natural times reveals that (i) exponential distribution has the best representation to the observed data; (ii) estimated nowcast scores (%) corresponding to M≥6.5 events for 21 cities are Bau-bau (41), Bitung (70), Bone (44), Buton (39), Donggala (63), Gorontalo (49), Kendari (27), Kolaka (30), Luwuk (56), Makassar (52), Mamuju (58), Manado (70), Morowali (37), Palopo (34), Palu (62), Pare-pare (82), Polewali (61), Poso (42), Taliabu (55), Toli-toli (58), and Watampone (55); and (iii) the results are broadly consistent to the changes of magnitude threshold and area of local regions. Therefore, the present nowcasting analysis, similar to the traditional earthquake hazard assessment techniques, offers a simple yet versatile metric to the scientists, engineers and policymakers to examine the current state of earthquake hazards in the thickly populated Sulawesi Island.


Sign in / Sign up

Export Citation Format

Share Document