reversal process
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 36)

H-INDEX

23
(FIVE YEARS 5)

Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1696
Author(s):  
Tong Zhou ◽  
Hang Sha ◽  
Meng Chen ◽  
Guobin Chen ◽  
Guiwei Zou ◽  
...  

The Chinese soft-shelled (Pelodiscus sinensis) turtle exhibits obvious sex dimorphism, which leads to the higher economic and nutritional value of male individuals. Exogenous hormones can cause the transformation from male to female phenotype during gonadal differentiation. However, the molecular mechanism related to the sexual reversal process is unclear. In this study, we compared the difference between the small RNAs of male, female, and pseudo-female turtles by small RNA-seq to understand the sexual reversal process of Chinese soft-shelled turtles. A certain dose of estrogen can cause the transformation of Chinese soft-shelled turtles from male to female, which are called pseudo-female individuals. The result of small RNA-seq has revealed that the characteristics of pseudo-females are very similar to females, but are strikingly different from males. The number of the microRNAs (miRNAs) of male individuals was significantly less than the number of female individuals or pseudo-female individuals, while the expression level of miRNAs of male individuals were significantly higher than the other two types. Furthermore, we found 533 differentially expressed miRNAs, including 173 up-regulated miRNAs and 360 down-regulated miRNAs, in the process of transformation from male to female phenotype. Cluster analysis of the total 602 differential miRNAs among females, males, and pseudo-females showed that miRNAs played a crucial role during the sexual differentiation. Among these differential miRNAs, we found 12 miRNAs related to gonadal development and verified their expression by qPCR. The TR-qPCR results confirmed the differential expression of 6 of the 12 miRNAs: miR-26a-5p, miR-212-5p, miR-202-5p, miR-301a, miR-181b-3p and miR-96-5p were involved in sexual reversal process, which was consistent with the results of omics. Using these six miRNAs and some of their target genes, we constructed a network diagram related to gonadal development. We suggest that these miRNAs may play an important role in the process of effective sex reversal, which would contribute to the breeding of all male strains of Chinese soft-shelled turtles.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2448
Author(s):  
Hamidreza Karami ◽  
Mohammad Azadifar ◽  
Zhaoyang Wang ◽  
Marcos Rubinstein ◽  
Farhad Rachidi

The localization of electromagnetic interference (EMI) sources is of high importance in electromagnetic compatibility applications. Recently, a novel localization technique based on the time-reversal cavity (TRC) concept was proposed using only one sensor, and its application to localize EMI sources was validated numerically. In this paper, we present a validation of the proposed time-reversal process in which the forward step of the time-reversal process is performed experimentally and the backward step is carried out via numerical simulations, a realistic scenario which is applicable to practical source localization problems. To the best of the authors’ knowledge, this is the first implementation of a three-dimensional electromagnetic time-reversal process in which the forward signal is provided experimentally while the backward propagation step is carried out numerically. The considered experimental setup is formed by a partially open cavity and two monopole antennas to emulate the EMI source and the sensor (receiving antenna), respectively. Assuming that the location of the source is the feed point of the monopole antenna, the resulting three-dimensional location error in the experimental validation was only 1.49 cm, which is about one-third the length of the monopole antenna, corresponding to about λmin/2 (diffraction limit).


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5671
Author(s):  
E. Berganza ◽  
J. Marqués-Marchán ◽  
C. Bran ◽  
M. Vazquez ◽  
A. Asenjo ◽  
...  

Magnetic nanowires, conceived as individual building blocks for spintronic devices, constitute a well-suited model to design and study magnetization reversal processes, or to tackle fundamental questions, such as the presence of topologically protected magnetization textures under particular conditions. Recently, a skyrmion-tube mediated magnetization reversal process was theoretically reported in diameter modulated cylindrical nanowires. In these nanowires, a vortex nucleates at the end of the segments with larger diameter and propagates, resulting in a first switching of the nanowire core magnetization at small fields. In this work, we show experimental evidence of the so-called Bloch skyrmion-tubes, using advanced Magnetic Force Microscopy modes to image the magnetization reversal process of FeCoCu diameter modulated nanowires. By monitoring the magnetic state of the nanowire during applied field sweeping, a detected drop of magnetic signal at a given critical field unveils the presence of a skyrmion-tube, due to mutually compensating stray field components. That evidences the presence of a skyrmion-tube as an intermediate stage during the magnetization reversal, whose presence is related to the geometrical dimensions of the cylindrical segments.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4680
Author(s):  
Jun Ma ◽  
Xiaotian Zhao ◽  
Wei Liu ◽  
Yang Li ◽  
Long Liu ◽  
...  

In this study, the magnetic properties, coercivity mechanism, and magnetization reversal process were investigated for Ce-(Y)-Pr-Fe-B films. After the addition of Y and subsequent heating treatment, the formations of REO (RE ≡ Ce and Pr) and REFe2 (RE ≡ rare earths) phases are inhibited, and the microstructure of Ce-Y-Pr-Fe-B film is optimized. Meanwhile, the coercivity and the squareness of the hysteresis loop are significantly improved. The coercivity mechanism of Ce-Y-Pr-Fe-B film is determined to be a mixture of nucleation and pinning mechanisms, but dominated by the nucleation mechanism. The demagnetization results show that the nucleation of reversal magnetic domains leads to irreversible reversal. Our results are helpful to understand the coercivity mechanism and magnetization reversal of permanent magnetic films with multi-main phases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yang Tai ◽  
Chong Zhao ◽  
Tian Lan ◽  
Linhao Zhang ◽  
Yang Xiao ◽  
...  

Liver fibrosis results from the imbalance between extracellular matrix (ECM) production and degradation, which is a common pathological consequence of various chronic liver diseases. Although many miRNAs have been reported in liver fibrosis progression, miRNA-mRNA interactions in its reversal process remain to be elucidated. In the current study, we performed an integrated analysis of miRNA and mRNA expression profiles in the mouse model with the spontaneous reversal potency of liver fibrosis. A total of 102 miRNA and 2,845 mRNAs showed significant differential expression in reversal mice compared to fibrotic mice. Moreover, 3,769 putative negatively correlated miRNA-mRNA pairs were revealed to be potentially implicated in the biological function regulation of small molecule metabolism and ECM organization. By integrating miRNA-mRNA regulatory networks, mmu-miR-1843a-5p, mmu-miR-193a-5p, mmu-miR-194-2-3p, and mmu-miR-30c-2-3p were identified as lysyl oxidases-specific miRNAs that were correlated with fibrosis reversal. Our results provided potential candidate targets for the treatment of liver fibrosis.


2021 ◽  
Vol 6 (2) ◽  
pp. 17
Author(s):  
Emre Öncü ◽  
Andrea Ehrmann

Square magnetic nanodots can show intentional or undesired shape modifications, resulting in superellipses with concave or convex edges. Some research groups also concentrated on experimentally investigating or simulating concave nano-superellipses, sometimes called magnetic astroids due to their similarity to the mathematical shape of an astroid. Due to the strong impact of shape anisotropy in nanostructures, the magnetization-reversal process including coercive and reversibility fields can be expected to be different in concave or convex superellipses than that in common squares. Here, we present angle-dependent micromagnetic simulations on magnetic nanodots with the shape of concave superellipses. While magnetization reversal occurs via meander states, horseshoe states or the 180° rotation of magnetization for the perfect square, depending on the angle of the external magnetic field, more complicated states occur for superellipses with strong concaveness. Even apparently asymmetric hysteresis loops can be found along the hard magnetization directions, which can be attributed to measuring minor loops since the reversibility fields become much larger than the coercive fields.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Łukasz Frąckowiak ◽  
Feliks Stobiecki ◽  
Gabriel David Chaves-O’Flynn ◽  
Maciej Urbaniak ◽  
Marek Schmidt ◽  
...  

AbstractRecent results showed that the ferrimagnetic compensation point and other characteristic features of Tb/Co ferrimagnetic multilayers can be tailored by He+ ion bombardment. With appropriate choices of the He+ ion dose, we prepared two types of lattices composed of squares with either Tb or Co domination. The magnetization reversal of the first lattice is similar to that seen in ferromagnetic heterostructures consisting of areas with different switching fields. However, in the second lattice, the creation of domains without accompanying domain walls is possible. These domain patterns are particularly stable because they simultaneously lower the demagnetizing energy and the energy associated with the presence of domain walls (exchange and anisotropy). For both lattices, studies of magnetization reversal show that this process takes place by the propagation of the domain walls. If they are not present at the onset, the reversal starts from the nucleation of reversed domains and it is followed by domain wall propagation. The magnetization reversal process does not depend significantly on the relative sign of the effective magnetization in areas separated by domain walls.


Sign in / Sign up

Export Citation Format

Share Document