geant4 code
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 22)

H-INDEX

11
(FIVE YEARS 5)

2021 ◽  
pp. 8-12
Author(s):  
O.O. Parlag ◽  
V.T. Maslyuk ◽  
E.V. Oleynikov ◽  
I.V. Pylypchynets ◽  
A.I. Lengyel

The values of relative cumulative yields of 12 products (85mKr, 91mY, 92Sr, 97Zr, 99Mo, 105Ru, 133I, 134I, 135I, 138Cs, 139Ba, 142La, 143Ce) of the 239Pu photofission was measured at a maximum bremsstrahlung energy of 17.5 MeV (av-erage excitation energy ~ 12.03 MeV). 239Pu photofission reaction was stimulated on the electron accelerator of the Institute of Electron Physics NAS of Ukraine – M-30 microtron to simulate the spectra of bremsstrahlung’s photons, secondary electrons, and photoneutrons that hit the 239Pu target, the GEANT4 code was used. The input of accom-panying nuclear reactions to the yield of 239Pu photofission products for the given experimental parameters was also evaluating. The obtained experimental data of the yields of products 239Pu photofission were compared with the program codes GEF and Talys1.9.5 simulations.


2021 ◽  
Vol 921 (2) ◽  
pp. 116
Author(s):  
Sergio Pilling ◽  
Maurício Tizziani Pazianotto ◽  
Lucas Alves de Souza

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6289
Author(s):  
Damjan Iveković ◽  
Petar Žugec ◽  
Marko Karlušić

High energy ion irradiation is an important tool for nanoscale modification of materials. In the case of thin targets and 2D materials, which these energetic ions can pierce through, nanoscale modifications such as production of nanopores can open up pathways for new applications. However, materials modifications can be hindered because of subsequent energy release via electron emission. In this work, we follow energy dissipation after the impact of an energetic ion in thin graphite target using Geant4 code. Presented results show that significant amount of energy can be released from the target. Especially for thin targets and highest ion energies, almost 40% of deposited energy has been released. Therefore, retention of deposited energy can be significantly altered and this can profoundly affect ion track formation in thin targets. This finding could also have broader implications for radiation hardness of other nanomaterials such as nanowires and nanoparticles.


2021 ◽  
Vol 911 (2) ◽  
pp. 129
Author(s):  
Mauricio Tizziani Pazianotto ◽  
Sergio Pilling ◽  
Jose Manuel Quesada Molina ◽  
Claudio Antonio Federico

2021 ◽  
Vol 11 (4) ◽  
pp. 1939
Author(s):  
Alessia Milano ◽  
Alex Vergara Gil ◽  
Enrico Fabrizi ◽  
Marta Cremonesi ◽  
Ivan Veronese ◽  
...  

The aim was the validation of a platform for internal dosimetry, named MCID, based on patient-specific images and direct Monte Carlo (MC) simulations, for radioembolization of liver tumors with 90Y-labeled microspheres. CT of real patients were used to create voxelized phantoms with different density and activity maps. SPECT acquisitions were simulated by the SIMIND MC code. Input macros for the GATE/Geant4 code were generated by MCID, loading coregistered morphological and functional images and performing image segmentation. The dosimetric results obtained from the direct MC simulations and from conventional MIRD approach at both organ and voxel level, in condition of homogeneous tissues, were compared, obtaining differences of about 0.3% and within 3%, respectively, whereas differences increased (up to 14%) introducing tissue heterogeneities in phantoms. Mean absorbed dose for spherical regions of different sizes (10 mm ≤ r ≤ 30 mm) from MC code and from OLINDA/EXM were also compared obtaining differences varying in the range 7–69%, which decreased to 2–9% after correcting for partial volume effects (PVEs) from imaging, confirming that differences were mostly due to PVEs, even though a still high difference for the smallest sphere suggested possible source description mismatching. This study validated the MCID platform, which allows the fast implementation of a patient-specific GATE simulation, avoiding complex and time-consuming manual coding. It also points out the relevance of personalized dosimetry, accounting for inhomogeneities, in order to avoid absorbed dose misestimations.


Author(s):  
L. Sajo-Bohus ◽  
J. A. López ◽  
M. Castro-Colin

Adverse effects of long-term exposure to galactic cosmic radiation (GCR) pose a non negligible obstacle for future space exploration programs; the high-LET-particle-rich environment has an adverse effect on human health. Concomitant to GCR we have as well solar particle radiation. Long term space exploration will rely on adequate and highly efficient shielding materials that will reduce exposure of both biosystems and electronic equipment to GCR and solar particles. The shield must attenuate efficiently heavy GCR ions, by breaking them up into less-damaging fragments and secondary radiation: biologically damaging energetic neutrons and highly charged and energetic HZE- particles. An approach to this problem is the development of shielding compounds. Shielding materials should address the conditions of different aspects of a given mission, e.g. time duration and travel path. The Monte Carlo method (GEANT4) is here employed to estimate the effects of a shielding material based on the recently developed Bi2O3-based compound (Cao et al., 2020). In the present study GEANT4 code is used to make estimations of attenuation of solar protons. The objective is to provide some insight about the effect of the new composite shield that has an intrinsic capability for dose reduction.


2020 ◽  
Vol 126 (7) ◽  
Author(s):  
Imen Kebaili ◽  
M. I. Sayyed ◽  
Imed Boukhris ◽  
M. S. Al-Buriahi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document