the japan sea
Recently Published Documents


TOTAL DOCUMENTS

972
(FIVE YEARS 91)

H-INDEX

54
(FIVE YEARS 3)

Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 17
Author(s):  
Shuqin Zhang ◽  
Gang Fu ◽  
Yu Zhang ◽  
Jianjun Xu ◽  
Yufeng Xue ◽  
...  

Statistical characteristics and composite synoptic-scale environmental conditions of explosive cyclones (ECs) over the Japan Sea and Kuroshio/Kuroshio Extension are examined and compared using ERA5 atmospheric reanalysis to give a better understanding of their differences. ECs over the Japan Sea frequently occur in late autumn and early winter and those over the Kuroshio/Kuroshio Extension mainly occur in winter and early spring. The maximum deepening rate, minimum central sea level pressure and explosive-developing lifetime of ECs over the Kuroshio/Kuroshio Extension are generally larger, lower and longer, respectively, than those over the Japan Sea. ECs over the Kuroshio/Kuroshio Extension formed over the East China Sea tend to develop more rapidly, and weak and moderate ECs generally begin to develop explosively over the sea to the east of the Japan Islands, while the strong and super ECs over the sea to the south of Japan Islands have longer explosive-developing tracks. Composite analysis shows that synoptic-scale environmental conditions favoring rapid EC development over these two regions are significantly different. ECs over the Japan Sea have stronger baroclinicity and cyclonic vorticity, but weaker water vapor convergence and upper-level jet stream than those over the Kuroshio/Kuroshio Extension. The key factor contributing to the baroclinicity is the cold air intrusion over the Japan Sea and the strong warm current heating over the Kuroshio/Kuroshio Extension. The potential vorticity shows anomalies in upper and low levels for both EC areas and extends further downwards over the Japan Sea.


Author(s):  
Sonja Felder ◽  
Takuya Sagawa ◽  
Mervyn Greaves ◽  
Melanie J. Leng ◽  
Ken Ikehara ◽  
...  
Keyword(s):  

Abstract The Sea of Japan (SOJ) coast and adjoining orography of central Honshu, Japan receive substantial snowfall each winter. A frequent contributor during cold-air outbreaks (CAOs) is the Japan Sea Polar-Airmass Convergence Zone (JPCZ), which forms downstream of the Korean Highlands, extends southeastward to Honshu, and generates a mesoscale band of precipitation. Mesoscale polar vortices (MPVs) ranging in horizontal scale from tens (i.e., meso-β-scale cyclones) to several hundred kilometers (i.e., “polar lows”) are also common during CAOs and often interact with the JPCZ. Here we use satellite imagery and Weather Research and Forecast model (WRF) simulations to examine the formation, thermodynamic structure, and airflow of a JPCZ that formed in the wake of an MPV during a CAO from 2–7 February 2018. The MPV and its associated warm seclusion and bent-back front developed in a locally warm, convergent, and convective environment over the SOJ near the base of the Korean Peninsula. The nascent JPCZ was structurally continuous with the bent-back front and lengthened as the MPV migrated southeastward. Trajectories illustrate how flow splitting around the Korean Highlands, channeling through low passes and valleys along the Asian coast, and air-sea interactions affect the formation and thermodynamic structure of the JPCZ. Contrasts in airmass origin and thermodynamic modification over the SOJ affect the cross-JPCZ temperature gradient, which reverses in sign along the JPCZ from the Asian coast to Honshu. These results provide new insights into the thermodynamic structure of the JPCZ, which is an important contributor to hazardous weather over Japan.


2021 ◽  
Author(s):  
Ritsuko S. Matsu'ura ◽  
Akinori Hashima ◽  
Takeo Ishibe

Abstract In the eastern margin of the Japan Sea, off the west coast of Tohoku district, the seismicity increased right after the M9 megathrust event off the east coast of the Tohoku district on March 11, 2011. Four months later, the seismicity decreased to the half level of that before the M9 event. Such quantitative study was done by the point-process model selection with AIC. The decrease lasted for eight years until an M6.7 event occurred within the area in 2019. When we compare the seismicity change between before and after the M9 event, with the post seismic change of the maximum shear stress obtained by the viscoelastic simulation for a thousand years after the M9 event, we can estimate a loading rate of the shear stress in the area before the M9 as 24 kPa/y. For the term after the M9 event, the rate is a half of it; 12 kPa/y. When we assume the whole dilatation change due to the M9 event had been canceled by the time of the M6.7, the increasing rate of the mean stress after the M9 event is 21 kPa/y at most. When we will be able to use JMA catalog for 2020 or later years, we can obtain the seismicity level after the M6.7 quantitatively, and we will be able to narrow down this estimation.


Author(s):  
Tomoharu Senjyu

AbstractThe flow field in the Toyama Deep-Sea Channel (TDSC) in the Japan Sea was investigated based on mooring observations. An asymmetric current system accompanying offshore and onshore currents over the east- and west-side slopes in the channel, respectively, is suggested. A bottom intensified flow characteristic was observed at the offshore stations in the Yamato Basin. The asymmetric current system in the channel is also suggested by the asymmetric distribution of water characteristics across the TDSC in Toyama Bay; a cold dense water mass with higher dissolved oxygen (DO) and higher transmittance (Tr) was found over the west-side slope of the channel, whereas a water mass with lower DO and lower Tr was distributed over the east-side slope, suggesting a turbidity current from the head of Toyama Bay. The currents facing the shallower depth on their right-hand-side, along with the density distribution in the TDSC, suggest a density current system under the influence of the earth’s rotation. The dissolved oxygen concentration in the TDSC was significantly lower than that in the offshore region of the same temperature range. This suggests that the water mass over the west-side slope in the TDSC is a modified offshore water mass which experienced significant mixing with the low DO water mass over the east-side slope in the TDSC, probably due to strong shear between the offshore and onshore currents in the narrow channel.


2021 ◽  
Author(s):  
Atsushi Urabe ◽  
Yoshihiro Kase ◽  
Gentaro Kawakami ◽  
Kenji Nishina ◽  
Yasuhiro Takashimizu ◽  
...  

Abstract The eastern margin of the Japan Sea is located along an active convergent boundary between the North American and Eurasian tectonic plates. Okushiri Island, which is situated off the southwest coast of Hokkaido, is located in an active tectonic zone where many active submarine faults are distributed. Studying the records of past tsunamis on Okushiri Island is important for reconstructing the history and frequency of fault activity in this region, as well as the history of tsunamis in the northern part of the eastern margin of the Japan Sea. Five tsunami deposit horizons have been identified previously on Okushiri Island, including that of the 1741 tsunami, which are interbedded in the coastal lowlands and Holocene terraces. However, these known tsunami deposits date back only ~3,000 years. A much longer record of tsunami occurrence is required to consider the frequency of submarine fault activity. In this study, we cored from 7 to 25 m depth in the Wasabiyachi lowland on the southern part of Okushiri Island, where previous studies have confirmed the presence of multiple tsunami deposits on peat layer surfaces. The results indicate that the Wasabiyachi lowland comprises an area that was obstructed by coastal barriers between the lowland and the coast at ~8.5 ka and consists of muddy sediment and peat layers formed in lagoons and floodplains, respectively. In addition, event deposits and 15 tsunami horizons were observed among the turbidites and peat layers, dating back as far as 3,000 years. Combined with previous findings, Okushiri Island has sustained 20 tsunami events between ~7.5 ka and the present. These findings are critical for investigating the activities of submarine faults off the southwestern coast of Hokkaido, as well as for determining tsunami risks along the coast of the Japan Sea between North Tohoku and Hokkaido.


2021 ◽  
Author(s):  
Ken-ichi Nakamura ◽  
Atsushi Nishimoto ◽  
Saori Yasui-Tamura ◽  
Yoichi Kogure ◽  
Misato Nakae ◽  
...  

Abstract. Human activities have caused sometimes dramatic changes to the marine environment globally and locally during the last half century. We hypothesized that the carbon and nitrogen stable isotope ratios (δ13C and δ15N) of the copepod Calanus sinicus, one of the dominant secondary producers of North Pacific coastal waters, would record anthropogenic impacts on the coastal environment of the Japan Sea. We monitored these isotope ratios during the spring at four stations in the Japan Sea from 2006 to 2020. The δ13C values ranged from −24.7 ‰ to −15.0 ‰ and decreased from the spring bloom (February/March) to the post-bloom (June/July). This monthly variation was attributed to changes in both the physiology of C. sinicus and phytoplankton δ13C. The negative correlation between the δ13C values of C. sinicus and their carbon:nitrogen ratios reflected lipid accumulation by the copepods; high δ13C values were associated with high sea surface chlorophyll a concentrations. The δ15N values ranged from 2.8 ‰ to 8.8 ‰. The tendency of the δ15N values to increase from the bloom to post-bloom was attributable to an increase of the δ15N of the phytoplankton associated with nitrate depletion and Rayleigh fractionation. These monthly changes were synchronized among the four stations, but δ13C and δ15N differed significantly between stations. Interannual variations were statistically significant, but there were no significant monotonic trends. Interannual variations differed between δ13C and δ15N as well as among stations. These results suggest that local conditions rather than global-scale trends were the primary determinants of elemental cycles in this coastal ecosystem.


Sign in / Sign up

Export Citation Format

Share Document