ground tire rubber
Recently Published Documents


TOTAL DOCUMENTS

225
(FIVE YEARS 78)

H-INDEX

30
(FIVE YEARS 6)

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 11
Author(s):  
Luis E. Alonso Alonso Pastor ◽  
Karina C. Núñez Núñez Carrero ◽  
Javier Araujo-Morera ◽  
Marianella Hernández Hernández Santana ◽  
José María Pastor

The use of devulcanized tire powder as an effective reinforcement in self-healing styrene-butadiene rubber (SBR) compounds has been investigated for the first time in this work. For this purpose, the evolution of the microstructure of the rubber from end-of-life tires (ELTs) was studied during granulation, grinding and devulcanization through an exhaustive characterization work in order to relate the final microstructure with the mechanical response of the repaired systems. Different morphologies (particle size distribution and specific surface area) obtained by cryogenic and water jet grinding processes, as well as different devulcanization techniques (thermo-mechanical, microwave, and thermo-chemical), were analyzed. The results demonstrated the key influence of the morphology of the ground tire rubber (GTR) on the obtained devulcanized products (dGTR). The predictions of the Horikx curves regarding the selectivity of the applied devulcanization processes were validated, thereby; a model of the microstructure of these materials was defined. This model made it possible to relate the morphology of GTR and dGTR with their activity as reinforcement in self-healing formulations. In this sense, higher specific surface area and percentage of free surface polymeric chains resulted in better mechanical performance and more effective healing. Such a strategy enabled an overall healing efficiency of more than 80% in terms of a real mechanical recovery (tensile strength and elongation at break), when adding 30 phr of dGTR. These results open a great opportunity to find the desired balance between the mechanical properties before and after self-repair, thus providing a high technological valorization to waste tires.


Author(s):  
Mushtaq Asim ◽  
Khan Raza Muhammad ◽  
Ali Zaeem Uddin

This research explores the effect of ground tire rubber (GTR) on the mechanical properties of LDPE. This thermoplastic-elastomer blend sets the composition of ground tire rubber and low-density polyethylene (LDPE/GTR). The blend was prepared in different proportions and was processed in a compression molding machine. The optimum operating conditions of the blend set to be 220℃ temperature and pressure varied from 150-200 bars. Different parts per hundred rubber (phr) samples were obtained under these conditions, including 1 phr, 2 phr, 3 phr, 4 phr, and 5 phr. After that, the mechanical properties of the blend were examined concerning various compositions. Different testing methods were used to determine the mechanical properties of the thermoplastic-elastomer blend, which include tensile strength, flexural strength, and Izod impact. The results obtained from these tests show that tensile strength and modulus decreases by increasing the rubber content. However, impact strength and percentage elongation increase by increasing the rubber content. This enhancement in impact and percentage elongation may be suitable for the applications in gymnasium mat and automobile industry.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4014
Author(s):  
Paulina Wiśniewska ◽  
Łukasz Zedler ◽  
Krzysztof Formela

In this paper, ground tire rubber was modified with dicumyl peroxide and a variable content (in the range of 0–15 phr) of ethylene-vinyl acetate copolymers characterized by different vinyl acetate contents (in the range of 18–39 wt.%). Modification of ground tire rubber was performed via an auto-thermal extrusion process in which heat was generated during internal shearing of the material inside the extruder barrel. The processing, performance properties, and storage stability of modified reclaimed ground tire rubber were evaluated based on specific mechanical energy, infrared camera images, an oscillating disc rheometer, tensile tests, equilibrium swelling, gas chromatography combined with a flame ionization detector, and gas chromatography with mass spectrometry. It was found that the developed formulas of modified GTR allowed the preparation of materials characterized by tensile strengths in the range of 2.6–9.3 MPa and elongation at break in the range of 78–225%. Moreover, the prepared materials showed good storage stability for at least three months and satisfied processability with commercial rubbers (natural rubber, styrene-butadiene rubber).


2021 ◽  
Author(s):  
Csilla Varga ◽  
Balázs Heller ◽  
Lilla Simon-Stőger ◽  
Éva Makó

Abstract Waste high-density polyethylene (w-HDPE)/ acrylonitrile-butadiene-styrene (ABS)/ground tire rubber (GTR) have been melt blended by two-roll milling. Ternary blends of w-HDPE/ABS/GTR have been observed to be incompatible in the composition range studied which revealed in the deteriorated mechanical properties. Two main types of compatibilizers such as an olefin-maleic anhydride copolymer based one synthesized by the authors and a commercial maleic anhydride grafted polypropylene (MA-g-PP) have been chosen for enhancing compatibility between the components ergo the mechanical properties. For characterizing tensile and impact properties of the blends mechanical tests have been carried out besides the scanning electron microscopy (SEM), X-ray diffraction and Fourier transform infrared spectroscopy. The most advantageous result in industrial practice can be that the experimental additive allows to apply higher GTR concentration ergo gives the opportunity to recycle higher level of GTR.


2021 ◽  
Vol 7 (1) ◽  
pp. 12
Author(s):  
Adam Olszewski ◽  
Paulina Kosmela ◽  
Łukasz Zedler ◽  
Krzysztof Formela ◽  
Aleksander Hejna

The development of the automotive sector and the increasing number of vehicles all over the world poses multiple threats to the environment. One of them, probably not so emphasized as others, is the enormous amount of post-consumer car tires. Due to the potential fire threat, waste tires are considered as dangerous waste, which should not be landfilled, so it is essential to develop efficient methods of their utilization. One of the possibilities is their shredding and application of resulting ground tire rubber (GTR) as filler for polymer composites, which could take advantage of the excellent mechanical performance of car tires. Nevertheless, due to the poor compatibility with majority of polymer matrices, prior to the application, surface of GTR particles should be modified and activated. In the presented work, the introduction of thermo-mechanically modified GTR into flexible foamed polyurethane matrix was analyzed. Isocyanates can be found among the compounds applied during manufacturing of polyurethane foams, which are able to react and generate covalent bonds with the functional groups present on the surface of modified GTR. Such an effect can noticeably enhance the interfacial interactions and boost up the mechanical performance. Nevertheless, it requires the adjustment of formulations used during manufacturing of foams. Therefore, for better understanding of the process foams with varying isocyanate index (from 0.8 to 1.2) were prepared with and without taking into account the possible interactions with functional groups of GTR. For comparison, an unfilled matrix and composite containing deactivated GTR were also prepared.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Alireza Ameli ◽  
Rezvan Babagoli

This research intends to evaluate the effects of the waste polyethylene terephthalate (PET), antistripping agents (ASA), and ground tire rubber (GTR) on the performance properties of the stone matrix asphalt (SMA) mix binder/water damage resistance. Liquid antistripping agents, added to 85/100 penetration grade binder to evaluate the ASA effects, were A (M500), B (EvothermM1), and C (LOF-6500). Tests conducted to study the modified bitumen’s rheological properties included softening point, penetration, rotational viscosity (RV), and dynamic shear rheometer (DSR), and tests performed in order to examine the moisture sensitivity of the modified mix were the Texas boiling and resilient modulus (MR), fracture energy (FE), and indirect tensile strength (ITS) ratio tests. Results showed that the MR, ITS, and FE of asphalt mixes modified with crumb rubber (CR), ASA, and PET were improved. Adding 50% PET, 50% CR, and ASA (B) led to the highest tensile strength, resilient modulus, and fracture energy ratios showing a perfect water susceptibility of the mentioned mix.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3213
Author(s):  
Marc Marín-Genescà ◽  
Ramon Mujal Rosas ◽  
Jordi García Amorós ◽  
Lluis Massagues Vidal ◽  
Xavier Colom Fajula

Waste from pneumatic wheels is one of the major environmental problems, and the scientific community is looking for methods to recycle this type of waste. In this paper, ground tire rubber particles (GTR) from disused tires have been mixed with samples of low-density polyethylene (LDPE) and high-density polyethylene (HDPE), and morphological tests have been performed using scanning electron microscopy (SEM), as well as the dynamic electric analysis (DEA) dielectric characterization technique using impedance spectroscopy. From this experience, how GTR reinforcement influences polyethylene and what influence GTR particles have on the branched polyethylene has been detected. For pure LDPE samples, a Debye-type dielectric behavior is observed with an imperfect semicircle, which depends on the temperature, as it shows differences for the samples at 30 °C and 120 °C, unlike the HDPE samples, which do not show such a trend. The behavior in samples with Debye behavior is like an almost perfect dipole and is due to the crystalline behavior of polyethylene at high temperature and without any reinforcement. These have been obtained evidence that for branched PE (LPDE) the Maxwell Wagner Sillars (MWS) effect is highly remarkable and that this happens due to the intrachain polarization effect combined with MWS. This means that the permittivity and conductivity at LDPE/50%GTR are high than LDPE/70%GTR. However, it does not always occur that way with HDPE composites in which HDPE/70%GTR has the highest values of permittivity and conductivity, due to the presence of conductive fraction (Carbon Black-30%) in the GTR particles and their dielectric behavior.


2021 ◽  
Vol 43 (3) ◽  
pp. 149-171
Author(s):  
V.V. TRACHEVSKYI ◽  
◽  
K.O. IVANENKO ◽  
O.M. FAINLEIB ◽  
◽  
...  

The review is devoted to the analysis of modern research in the development of formulations and technology for the manufacture of composites based on bituminous binders for the creation of improved asphalt concrete. Methods for modification of bitumen by polymer additives, chemical stabilizers, industrial wastes (recycled polymers, ground tire rubber, fly ash, etc.), nanodispersed additives and carbon nanomaterials to obtain the necessary predetermined properties are considered. The positive and negative aspects of using various modifiers are analyzed. The efficiency of modification of bituminous binders with recycled polymers and nano(ultra)dispersed fillers is shown, which makes it possible to create composites based on bituminous binders for asphalt concrete pavements with high performance characteristics. The optimal content of additives to the bitumen binder has been analyzed: the amount of thermoplastic polymers and thermoplastic elastomers in the range of 3-10 wt.%, thermosetting polymers − over 10 wt.%, elastomers − up to 15 wt.%, and nano-sized additives: nano-oxides ≥ 5 wt.%, nanoclay ~ 3 wt. %, carbon nanotubes, graphene < 1.2 wt.%. Modification of bitumen with recycled polymers and partial replacement of expensive polymer modifiers with cheaper polymer waste, composite modifiers, namely recycled polymer mixed with ground tire rubber and / or fly ash are considered. This allows solving the environmental problems (waste utilization and secondary use) and reduce the cost of asphalt concrete. From the analysis of the experimental results, it becomes clear that for prediction of the properties of modified asphalt concrete, the basic characteristics of the original bitumen, which can differ significantly, are important, as well as the type of modifier (combination of modifiers), its chemical nature, and the efficiency of its dispersing in bitumen. The different chemical composition of the initial bitumen and its physicochemical properties probably play a primary role in imparting high and low temperature properties to asphalt concrete. Modification of a bituminous binder with waste polymers and nanofillers, first of all, makes it possible to improve such important performance characteristics of bitumen and asphalt concrete, such as softening temperature, penetration, penetration index, ductility, viscosity, moisture resistance, complex shear modulus, rutting parameter, resistance to cracking, etc.


Sign in / Sign up

Export Citation Format

Share Document