Abstract
The paper is concerned with the complexity and depth of reversible circuits consisting of NOT, CNOT, and 2-CNOT gates under constraints on the number of additional inputs. We study the Shannon functions for the complexity L(n, q) and depth D(n, q) of a reversible circuit implementing a map
f
:
ℤ
2
n
→
ℤ
2
n
$f\colon \mathbb{Z}_2^n \to \mathbb{Z}_2^n$
under the condition that the number of additional inputs q is in the range
8
n
<
q
≲
n
2
n
−
⌈
n
/
ϕ
(
n
)
⌉
$8n < q \mathbin{\lower.3ex\hbox{$\buildrel<\over
{\smash{\scriptstyle\sim}\vphantom{_x}}$}} n{2^{n - \left\lceil {n{\rm{ }}/\phi (n)} \right\rceil }}$
, where ϕ(n) → ∞ and n / ϕ(n) − log2
n → ∞ as n → ∞. We establish the upper estimates
L
(
n
,
q
)
≲
2
n
+
8
n
2
n
/
(
log
2
(
q
−
4
n
)
−
log
2
n
−
2
)
$L(n,q) \lesssim 2^n + 8n2^n \mathop / (\log_2 (q-4n) - \log_2 n - 2)$
and
D
(
n
,
q
)
≲
2
n
+
1
(
2
,
5
+
log
2
n
−
log
2
(
log
2
(
q
−
4
n
)
−
log
2
n
−
2
)
)
$D(n,q) \lesssim 2^{n+1}(2,5 + \log_2 n - \log_2 (\log_2 (q - 4n) - \log_2 n - 2))$
for this range of q. The asymptotics
L
(
n
,
q
)
≍
n
2
n
/
log
2
q
$L(n,q) \asymp n2^n \mathop / \log_2 q$
is established for q such that
n
2
≲
q
≲
n
2
n
−
⌈
n
/
ϕ
(
n
)
⌉
${n^2} \mathbin{\lower.3ex\hbox{$\buildrel<\over
{\smash{\scriptstyle\sim}\vphantom{_x}}$}} q \mathbin{\lower.3ex\hbox{$\buildrel<\over
{\smash{\scriptstyle\sim}\vphantom{_x}}$}} n{2^{n - \left\lceil {n{\rm{ }}/\phi (n)} \right\rceil }}$
, where ϕ(n) → ∞ and n / ϕ(n) − log2
n → ∞ as n → ∞.