geopolymer matrix
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 41)

H-INDEX

13
(FIVE YEARS 3)

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 966
Author(s):  
Subaer Subaer ◽  
Hamzah Fansuri ◽  
Abdul Haris ◽  
Misdayanti ◽  
Resky Irfanita ◽  
...  

This is the first of two papers about the synthesis and microstructure properties of the Geo–rGO–TiO2 ternary nanocomposite, which was designed to suit the criteria of a pervaporation membrane for seawater desalination. The performance and capability of Geo–rGO–TiO2 as a seawater desalination pervaporation membrane are described in the second paper. A geopolymer made from alkali-activated metakaolin was utilized as a binder for the rGO-TiO2 nanocomposite. A modified Hummer’s method was used to synthesize graphene oxide (GO), and a hydrothermal procedure on GO produced reduced graphene oxide (rGO). The adopted approach yielded high-quality GO and rGO, based on Raman spectra results. The nanolayered structure of GO and rGO is revealed by Transmission Electron Microscopy (TEM) images. The Geo–rGO–TiO2 ternary nanocomposite was created by dispersing rGO nanosheets and TiO2 nanoparticles into geopolymer paste and stirring it for several minutes. The mixture was then cured in a sealed mold at 70 °C for one hour. After being demolded, the materials were kept for 28 days before being characterized. Fourier Transform Infrared (FTIR) and X-ray Diffraction (XRD) measurements revealed that the geopolymer matrix efficiently bonded the rGO and TiO2, creating nanocomposites. Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS) was used to examine the morphology of the outer layer and cross-sections of nanocomposites, and the results displayed that rGO were stacked on the surface as well as in the bulk of the geopolymer and will potentially function as nanochannels with a width of around 0.36 nm, while TiO2 NPs covered the majority of the geopolymer matrix, assisting in anti-biofouling of the membranes. The pores structure of the Geo–rGO–TiO2 were classified as micro–meso pores using the Brunauer–Emmet–Teller (BET) method, indicating that they are appropriate for use as pervaporation membranes. The mechanical strength of the membranes was found to be adequate to withstand high water pressure during the pervaporation process. The addition of rGO and TiO2 NPs was found to improve the hyropobicity of the Geo–rGO–TiO2 nanocomposite, preventing excessive seawater penetration into the membrane during the pervaporation process. The results of this study elucidate that the Geo–rGO–TiO2 nanocomposite has a lot of potential for application as a pervaporation membrane for seawater desalination because all of the initial components are widely available and inexpensive.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1511
Author(s):  
Martina Novotná ◽  
Petr Knotek ◽  
Tomáš Hanzlíček ◽  
Petr Kutálek ◽  
Ivana Perná ◽  
...  

This article studies the photocatalytic activity of three types of industrially produced TiO2 powder (P25, CG100 and CG300) incorporated into a parent geopolymer matrix, and their pure counterparts, based on the decomposition of Rhodamine B dye. Rhodamine B dye is applied as a model substance because it is frequently used in the textile industry and thus may be present in the wastewater. The average particle size, specific surface area and mineralogical composition of TiO2 powders have been determined. The geopolymer matrix works well as a supporting material for the CG100 and P25 pure types of TiO2 powder as these input materials have better properties such as a higher average particle size, lower specific surface area, mineralogicalcomposition, etc., than the CG300 TiO2 powder. These properties (or their combination) affect the photocatalytic activity of the resulting materials, which may thus become advanced composites with an additional purifying ability, e.g., materials that can be used for wastewater treatment or air purification.


2021 ◽  
Author(s):  
◽  
Mahroo Falah

<p>This thesis describes the development and performance of novel photocatalytic inorganic polymer (geopolymer) composites for photodegradation of environmentally harmful organic materials. Nanometer-sized cubic cuprous oxide nanoparticles and spherical Cu₂O/TiO₂ nano-heterostructures were synthesized via a precipitation method and then added to a metakaolinite-based geopolymer matrix prior to curing at ambient temperature.  The morphology of the homogeneous oxide nanoparticle dispersion within the geopolymer matrix was demonstrated by SEM/EDS and HRTEM. FTIR spectroscopy confirmed the formation of a well-reacted geopolymer matrix that was unaffected by the insertion of the Cu₂O and Cu₂O/TiO₂ nanoparticles. The structures of these new composites were determined by ²⁷Al and ²⁹Si MAS NMR spectroscopy. ⁶³Cu NQR spectroscopy and XRD confirmed that the metal oxide nanoparticles are unchanged by their incorporation in the geopolymer composite and after the photodegradation reactions. The nitrogen adsorption-desorption isotherms were determined, providing information about the specific surface areas and total pore volumes of the composites. The action of the composites in the adsorption and photocatalytic destruction of the model organic compound MB was determined under dark and UV illumination conditions. Experiments in dark conditions and under UV irradiation showed that these materials efficiently remove a model organic pollutant (MB dye) from solution by a dual process of adsorption on the geopolymer matrix, and photodecomposition of the dye without destroying the geopolymer structure. The adsorption kinetics of the dye are best described by a pseudo first-order model and the adsorption process by Langmuir-Freundlich isotherms.  In a novel extension of this research, the metakaolinite-based geopolymer matrix was modified with a surfactant (cetyltrimethylammonium bromide, CTAB), exploiting the cation exchange capacity of the geopolymers structure. The nano oxide composites were synthesised by adding different amounts of as-prepared metal oxide nanoparticles to the modified geoplymer to produce a hydrophobic photocatalyst composite with improved photocatalytic activity arising from the dispersion of the metal oxide nanoparticles in the external surfaces and interlayers of the geopolymer matrix. This method has the advantage of producing geopolymer composites with a stable pH which are more suitable for dye degradation studies.  At concentrations >20 wt%, the photo-oxide component decreases the adsorption rate by blocking the active adsorption sites of the geopolymer. Under UV radiation, the composites remove the MB by a combination of adsorption and photodegradation, without deterioration of the geopolymer structure or the photoactive metal oxide component.  In addition these studies show that the metal oxide-geopolymer nano composites have significantly improved photocatalytic activity compared with the oxide nanoparticles alone, because of the unique properties of these inorganic polymers. These results demonstrate that composites of nanosized Cu₂O particles and photoreactive TiO₂ in an aluminosilicate inorganic polymer matrix constitute new and novel materials with potential environmental protection applications to efficiently remove organic pollutants from water or the atmosphere.</p>


2021 ◽  
Author(s):  
◽  
Mahroo Falah

<p>This thesis describes the development and performance of novel photocatalytic inorganic polymer (geopolymer) composites for photodegradation of environmentally harmful organic materials. Nanometer-sized cubic cuprous oxide nanoparticles and spherical Cu₂O/TiO₂ nano-heterostructures were synthesized via a precipitation method and then added to a metakaolinite-based geopolymer matrix prior to curing at ambient temperature.  The morphology of the homogeneous oxide nanoparticle dispersion within the geopolymer matrix was demonstrated by SEM/EDS and HRTEM. FTIR spectroscopy confirmed the formation of a well-reacted geopolymer matrix that was unaffected by the insertion of the Cu₂O and Cu₂O/TiO₂ nanoparticles. The structures of these new composites were determined by ²⁷Al and ²⁹Si MAS NMR spectroscopy. ⁶³Cu NQR spectroscopy and XRD confirmed that the metal oxide nanoparticles are unchanged by their incorporation in the geopolymer composite and after the photodegradation reactions. The nitrogen adsorption-desorption isotherms were determined, providing information about the specific surface areas and total pore volumes of the composites. The action of the composites in the adsorption and photocatalytic destruction of the model organic compound MB was determined under dark and UV illumination conditions. Experiments in dark conditions and under UV irradiation showed that these materials efficiently remove a model organic pollutant (MB dye) from solution by a dual process of adsorption on the geopolymer matrix, and photodecomposition of the dye without destroying the geopolymer structure. The adsorption kinetics of the dye are best described by a pseudo first-order model and the adsorption process by Langmuir-Freundlich isotherms.  In a novel extension of this research, the metakaolinite-based geopolymer matrix was modified with a surfactant (cetyltrimethylammonium bromide, CTAB), exploiting the cation exchange capacity of the geopolymers structure. The nano oxide composites were synthesised by adding different amounts of as-prepared metal oxide nanoparticles to the modified geoplymer to produce a hydrophobic photocatalyst composite with improved photocatalytic activity arising from the dispersion of the metal oxide nanoparticles in the external surfaces and interlayers of the geopolymer matrix. This method has the advantage of producing geopolymer composites with a stable pH which are more suitable for dye degradation studies.  At concentrations >20 wt%, the photo-oxide component decreases the adsorption rate by blocking the active adsorption sites of the geopolymer. Under UV radiation, the composites remove the MB by a combination of adsorption and photodegradation, without deterioration of the geopolymer structure or the photoactive metal oxide component.  In addition these studies show that the metal oxide-geopolymer nano composites have significantly improved photocatalytic activity compared with the oxide nanoparticles alone, because of the unique properties of these inorganic polymers. These results demonstrate that composites of nanosized Cu₂O particles and photoreactive TiO₂ in an aluminosilicate inorganic polymer matrix constitute new and novel materials with potential environmental protection applications to efficiently remove organic pollutants from water or the atmosphere.</p>


2021 ◽  
Author(s):  
◽  
Michael Welter

<p>Geopolymers have been suggested in the literature as matrix materials for fibre reinforced composites due to a unique combination of low-temperature synthesis and high temperature stability. This study investigated several key aspects of fibre reinforced geopolymer matrix composites in order to improve the basic knowledge of these materials. It was demonstrated that geopolymer matrix composites show great potential as fire-resistant materials for near room temperature applications. In particular, basalt fibre composites were of great interest due to their comparatively low cost and good mechanical performance. Microstructural investigations indicated that basalt fibres can potentially be used in geopolymer matrices up to 600°C. However, the success of the application of geopolymer matrix composites at higher temperatures is seen as critical and depends on further development of suitable matrices.  Several compositions within a sodium-metahalloysite model matrix system were evaluated in order to identify a suitable formulation for composite fabrication. An average compressive strength of ~ 79 MPa and flexural strength and modulus of ~ 10 MPa and 8.5 GPa, respectively, were achieved for the best batch of the main matrix composition. By optimising the matrix composition, the mechanical properties could be significantly improved, achieving an extremely high maximum compressive strength value of 145 MPa. Issues with reproducibility and the influence of various aspects of the fabrication process are discussed.  The room temperature flexural properties of unidirectional fibre reinforced composite bars with basalt, carbon and alumina fibres were investigated. Besides the fibre type, the effects of several other parameters including fibre sizing, matrix strength, span-to-depth ratio and specimen dimensions on the flexural properties and the failure behaviour of the composites were studied. Significant improvements to the mechanical properties were achieved with all fibre types. However, the mechanical behaviour was highly influenced by the elastic modulus of the fibre. Furthermore, it was shown that the composite properties were affected by the overall sample dimensions, the testing span and the mixing time of the geopolymer binder. The alumina fibre composites achieved the highest flexural stress with a maximum value of 470 MPa and a fibre content of ~ 30 vol.-%. Basalt and carbon fibre composites showed maximum flexural strength values around 200 MPa. Although all composite types displayed considerable post-fracture strength, only the basalt composites failed in tensile mode. The applicability of the weak matrix composites (WMC) concept to describe the mechanical behaviour of geopolymer matrix composites was discussed.  The fibre-matrix interactions were analysed between room temperature and 1000°C by means of electron microscopy, EDS and x-ray diffraction. All fibres were found to be chemically stable under the highly alkaline conditions of the geopolymer synthesis and showed no significant reaction with the geopolymer matrix at room temperature. The results indicate that basalt fibre composites may be used up to 600°C without significant degradation of the fibre. The heating of the carbon fibre composites to 600°C had drastic effect on the strength and integrity of the composite, in particular, when using sized carbon fibres. The alumina fibres showed good wetting and bonding behaviour but otherwise little reaction with the matrix even after heating to 1000°C.</p>


2021 ◽  
Author(s):  
◽  
Michael Welter

<p>Geopolymers have been suggested in the literature as matrix materials for fibre reinforced composites due to a unique combination of low-temperature synthesis and high temperature stability. This study investigated several key aspects of fibre reinforced geopolymer matrix composites in order to improve the basic knowledge of these materials. It was demonstrated that geopolymer matrix composites show great potential as fire-resistant materials for near room temperature applications. In particular, basalt fibre composites were of great interest due to their comparatively low cost and good mechanical performance. Microstructural investigations indicated that basalt fibres can potentially be used in geopolymer matrices up to 600°C. However, the success of the application of geopolymer matrix composites at higher temperatures is seen as critical and depends on further development of suitable matrices.  Several compositions within a sodium-metahalloysite model matrix system were evaluated in order to identify a suitable formulation for composite fabrication. An average compressive strength of ~ 79 MPa and flexural strength and modulus of ~ 10 MPa and 8.5 GPa, respectively, were achieved for the best batch of the main matrix composition. By optimising the matrix composition, the mechanical properties could be significantly improved, achieving an extremely high maximum compressive strength value of 145 MPa. Issues with reproducibility and the influence of various aspects of the fabrication process are discussed.  The room temperature flexural properties of unidirectional fibre reinforced composite bars with basalt, carbon and alumina fibres were investigated. Besides the fibre type, the effects of several other parameters including fibre sizing, matrix strength, span-to-depth ratio and specimen dimensions on the flexural properties and the failure behaviour of the composites were studied. Significant improvements to the mechanical properties were achieved with all fibre types. However, the mechanical behaviour was highly influenced by the elastic modulus of the fibre. Furthermore, it was shown that the composite properties were affected by the overall sample dimensions, the testing span and the mixing time of the geopolymer binder. The alumina fibre composites achieved the highest flexural stress with a maximum value of 470 MPa and a fibre content of ~ 30 vol.-%. Basalt and carbon fibre composites showed maximum flexural strength values around 200 MPa. Although all composite types displayed considerable post-fracture strength, only the basalt composites failed in tensile mode. The applicability of the weak matrix composites (WMC) concept to describe the mechanical behaviour of geopolymer matrix composites was discussed.  The fibre-matrix interactions were analysed between room temperature and 1000°C by means of electron microscopy, EDS and x-ray diffraction. All fibres were found to be chemically stable under the highly alkaline conditions of the geopolymer synthesis and showed no significant reaction with the geopolymer matrix at room temperature. The results indicate that basalt fibre composites may be used up to 600°C without significant degradation of the fibre. The heating of the carbon fibre composites to 600°C had drastic effect on the strength and integrity of the composite, in particular, when using sized carbon fibres. The alumina fibres showed good wetting and bonding behaviour but otherwise little reaction with the matrix even after heating to 1000°C.</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Menglong Cong ◽  
Shanshan Zhang ◽  
Dandan Sun ◽  
Kunpeng Zhou

For the purpose of reducing the energy consumption and construction cost of buildings, the preparation process of geopolymer based foamed concrete, which is a novel material of the wall and roof of building, had been studied in detail. Water glass and sodium hydroxide were used as the alkali activator to excite the mixture consists of slag, fly ash and Kaolin to form the geopolymer matrix, and finally the foams generated using the physical foaming method were filled into the geopolymer matrix to produce geopolymer-based foamed concrete blocks. In the preparation process, firstly one of the four parameters of foam content, water-binder ratio, water glass content, and water glass modulus had been changed separately to study the influence of a single factor on the compressive strength, dry density, thermal conductivity and specific strength of foamed concrete blocks. The experimental results show that the above four factors have different degrees of influence on the concerned performances. Next, some representative combinations of these factors were constructed by orthogonal experiment method, and the influence degree of each combination on the concerned performances was determined by means of range analysis. According to the results of analysis, the most important influencing factor in terms of thermal conductivity was the water-binder ratio, followed by foam content, water glass modulus and water glass content. When the foam content is 1.58%, the water-binder ratio is 0.45, the water glass content is 30%, and the water glass modulus is 1.2, the thermal conductivity of the prepared geopolymer foam concrete reaches 0.044 W/(m·K), which satisfies the expected requirements for heating in severe cold areas.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1212
Author(s):  
Elisabetta Maria Cepollaro ◽  
Renata Botti ◽  
Giorgia Franchin ◽  
Luciana Lisi ◽  
Paolo Colombo ◽  
...  

Geopolymer-based monoliths manufactured by direct ink writing, containing up to 60% by weight of presynthesized ZSM5 with low Si/Al ratio, were investigated as structured catalysts for the NH3-SCR of NOx. Copper was introduced as the active metal by ion exchange after a preliminary acid treatment of the monoliths. Monolithic catalysts were characterized by morphological (XRD and SEM), textural (BET and pore size distribution), mechanical (compressive strength), chemical (ICP–MS), redox (H2-TPR) and surface (NH3-TPD) analyses, showing the preservation of Cu-exchanged zeolite features in the composite monoliths. NH3-SCR tests, carried out on both monolithic and powdered samples in the temperature range 70–550 °C, confirmed that composite monoliths provide a very good activity and a high selectivity to N2 over the whole range of temperatures explored due to the hierarchical structure of the materials, in addition to a good mechanical resistance—mostly related to the geopolymer matrix.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5741
Author(s):  
Agnieszka Baziak ◽  
Kinga Pławecka ◽  
Izabela Hager ◽  
Arnaud Castel ◽  
Kinga Korniejenko

The aim of this paper is to analyze the influence of hybrid fiber reinforcement on the properties of a lightweight fly ash-based geopolymer. The matrix includes the ratio of fly ash and microspheres at 1:1. Carbon and steel fibers have been chosen due to their high mechanical properties as reinforcement. Short steel fibers (SFs) and/or carbon fibers (CFs) were used as reinforcement in the following proportions: 2.0% wt. CFs, 1.5% wt. CFs and 0.5% wt. SFs, 1.0% wt. CFs and 1.0% wt. SFs, 0.5% wt. CFs and 1.5% wt. SFs and 2.0% wt. SFs. Hybrid reinforcement of geopolymer composites was used to obtain optimal strength properties, i.e., compressive strength due to steel fiber and bending strength due to carbon fibers. Additionally, reference samples consisting of the geopolymer matrix material itself. After the production of geopolymer composites, their density was examined, and the structure (using scanning electron microscopy) and mechanical properties (i.e., bending and compressive strength) in relation to the type and amount of reinforcement. In addition, to determine the thermal insulation properties of the geopolymer matrix, its thermal conductivity coefficient was determined. The results show that the addition of fiber improved compressive and bending strength. The best compressive strength is obtained for a steel fiber-reinforced composite (2.0% wt.). The best bending strength is obtained for the hybrid reinforced composite: 1.5% wt. CFs and 0.5% wt. SFs. The geopolymer composite is characterized by low thermal conductivity (0.18–0.22 W/m ∙ K) at low density (0.89–0.93 g/cm3).


2021 ◽  
Author(s):  
Pumipat K. Pachana ◽  
Ubolluk Rattanasak ◽  
Kamchai Nuithitikul ◽  
Peerapong Jitsangiam ◽  
Prinya Chindaprasirt

Abstract Raw water is significant resources for industrial water usage, but this water is not directly suitable for use due to the presence of contaminants. Therefore, pre-treatment is essential. In addition, the presence of iron (Fe) and manganese (Mn) in groundwater can result in a reddish-brown colour and undesirable taste and odour. The treatment generates water treatment residue (WTR) which consists of silt, clay and undesirable components. Most WTR is conventionally disposed of in landfill. A number of expensive and complex technologies are being used for the removal of such iron and manganese. Due to the high Al2O3 and SiO2 content in WTR, the use of WTR-based geopolymers for Fe/Mn removal is proposed in this study. With the availability of free alkali in the geopolymer framework, the OH-releasing behaviour of the WTR-based geopolymer was investigated by the precipitation of Fe(II) ion. The WTR-based geopolymer was calcined at 400°C and 600°C to obtain a strong geopolymer matrix with the ability to remove Fe/Mn ions. The results show that the WTR-based geopolymer has the potential to remove Fe from Fe-contaminated water. Hydroxide ions are released from the geopolymer and form an Fe(OH)3 precipitate. A calcination temperature of 400°C provides total removal of the Fe after 24 h of immersion. In addition, the existence of Fe(OH)3 helps to coprecipitate the Mn(OH)2 in the Fe/Mn solution leading to a significant reduction of Mn from the solution. The pH value and retention time play an important role in the final metal concentration. The final pH of the solution is close to 8.5, which is the recommended value for boiler water. This method offers an alternative use of WTR in making a porous geopolymer for groundwater Fe removal using a simple method.


Sign in / Sign up

Export Citation Format

Share Document