cellular glass
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 23)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 2 (6) ◽  
pp. 21-31
Author(s):  
Lucian Paunescu ◽  
Sorin Mircea Axinte ◽  
Felicia Cosmulescu

Improving the original manufacturing process in microwave field of a cellular glass aggregate using a recipe containing colored consumed drinking bottle, calcium carbonate (CaCO3) as an expanding agent, sodium borate (borax) as a fluxing agent and sodium silicate (Na2SiO3) as a binder is shown in the work. The main adopted technological measures were the advanced mechanical processing of residual glass at a grain dimension below 100 μm and especially the use of a high electromagnetic wave susceptible ceramic tube with a wall thickness reduced from 3.5 to 2.5 mm for the protection of the pressed glass-based mixture against the aggressive effect of microwave field and, in the same time, to achieve a preponderantly direct heating with electromagnetic waves. Of the tested variants, a recipe with 1.6 % calcium carbonate, 6 % borax, 8 % sodium silicate and the rest residual glass was determined to be optimal. The cellular glass aggregate had the bulk density of 0.22 g/cm3, heat conductivity of 0.079 W/m·K and compression strength of 5.9 MPa. The specific consumption of energy was very low (0.71 kWh/kg) below the range of reported values of the industrial processes consumption (between 0.74-1.15 kWh/kg).  


2021 ◽  
Vol 2 (5) ◽  
pp. 37-46
Author(s):  
Lucian Paunescu ◽  
Sorin Mircea Axinte ◽  
Felicia Cosmulescu

The paper presents an improved method of manufacturing cellular glass using residual glass (91 %), sodium borate (5 %), eggshell waste (4 %) and added water (9 %). Compared to methods using eggshell as an expanding agent producing cellular glass with low compression strength, the technique adopted by the authors is original by the addition of sodium borate, which contributes to increasing the compression strength and the use of the unconventional electromagnetic wave heating method, which ensures very economical specific energy consumption. The optimal variant of cellular glass had the following characteristics: density of 0.40 g/cm3, porosity of 81 %, heat conductivity of 0.086 W/m·K, compression strength of 4.3 MPa and the cell dimension between 0.3-0.9 mm. The specific energy consumption of the process was 0.80 kWh/kg. The product has adequate features for using as a heat insulation material under conditions of quite high mechanical loading.  


Author(s):  
Lucian Păunescu ◽  
◽  
Sorin Mircea Axinte ◽  
Marius Florin Drăgoescu ◽  
Bogdan Valentin Păunescu ◽  
...  

Author(s):  
Sorin Mircea Axinte ◽  
Lucian Paunescu ◽  
Marius Florin Dragoescu ◽  
Felicia Cosmulescu

2020 ◽  
Vol 1 (4) ◽  
pp. 18-27
Author(s):  
Lucian Paunescu ◽  
Sorin Mircea Axinte ◽  
Marius Florin Dragoescu ◽  
Felicia Cosmulescu

Abstract                                                         The manufacture experimentation of a cellular glass exclusively from mineral waste and natural residues using the unconventional technique of microwave irradiation was the objective of the research whose results are presented in the paper. The originality of the paper results from the use of oak leaves as a vegetable foaming agent as well as the use of microwave energy in heating processes of the raw material powder mixture for manufacturing thermal insulating materials for the building construction. Worldwide, these processes use only conventional heating techniques. The experimental results led to the conclusion that both the use of waste and residues, as well as the unconventional heating technique allow to obtain porous materials with structural homogeneity having apparent densities and thermal conductivities that can decrease up to 0.34 g/cm3, and 0.071 W/m·K respectively. The compressive strength corresponding to the materials with the lowest values of density and thermal conductivity has an acceptable value (1.2 MPa) for the field of application. The specific energy consumption is around 1 kWh/kg, being approximately at the same level with the values of industrial consumptions achieved by conventional techniques.


Sign in / Sign up

Export Citation Format

Share Document