biometric template
Recently Published Documents


TOTAL DOCUMENTS

240
(FIVE YEARS 68)

H-INDEX

20
(FIVE YEARS 2)

Author(s):  
Marwa Fadhel Jassim ◽  
Wafaa mohammed Saeed Hamzah ◽  
Abeer Fadhil Shimal

Biometric technique includes of uniquely identifying person based on their physical or behavioural characteristics. It is mainly used for authentication. Storing the template in the database is not a safe approach, because it can be stolen or be tampered with. Due to its importance the template needs to be protected. To treat this safety issue, the suggested system employed a method for securely storing the iris template in the database which is a merging approach for secret image sharing and hiding to enhance security and protect the privacy by decomposing the template into two independent host (public) iris images. The original template can be reconstructed only when both host images are available. Either host image does not expose the identity of the original biometric image. The security and privacy in biometrics-based authentication system is augmented by storing the data in the form of shadows at separated places instead of whole data at one. The proposed biometric recognition system includes iris segmentation algorithms, feature extraction algorithms, a (2, 2) secret sharing and hiding. The experimental results are conducted on standard colour UBIRIS v1 data set. The results indicate that the biometric template protection methods are capable of offering a solution for vulnerability that threatens the biometric template.


2022 ◽  
Vol 33 (1) ◽  
pp. 549-565
Author(s):  
Ahmed M. Ayoup ◽  
Ashraf A. M. Khalaf ◽  
Fahad Alraddady ◽  
Fathi E. Abd El-Samie ◽  
Walid El-Safai ◽  
...  

2021 ◽  
pp. 92-102
Author(s):  
Sergiy Rassomakhin ◽  
Olha Melkozerova ◽  
Oleksii Nariezhnii

The subject matter of the paper is the development of fingerprint local structures based on the new method of the minutia vicinity decomposition (MVD) for the solution to the task of fingerprint verification. It is an essential task because it is produced attempts to introduce biometric technology in different areas of social and state life: criminology, access control system, mobile device applications, banking. The goal is to develop real number vectors that can respond to criteria for biometric template protection schemes such as irreversibility with the corresponding accuracy of equal error rate (EER). The problem to be solved is the problem of accuracy in the case of verification because there are false minutiae, disappearing of truth minutiae and there are also linear and angular deformations. The method is the new method of MVD that used the level of graphs with many a point from 7 to 3. This scheme of decomposition is shown in this paper; such a variant of decomposition is never used in science articles. The following results were obtained: description of a new method for fingerprint verification. The new metric for creating vectors of real numbers were suggested – a minimal path for points in the graphs. Also, the algorithm for finding out minimal paths for points was proposed in the graphs because the classic algorithm has a problem in some cases with many points being 6. These problems are crossing and excluding arcs are in the path. The way of sorting out such problems was suggested and examples are given for several points are 20. Results of false rejection rate (FRR), false acceptance rate (FAR), EER are shown in the paper. In this paper, the level of EER is 33 % with full search. 78400 false and 1400 true tests were conducted. The method does not use such metrics as distances and angles, which are used in the classical method of MVD and will be used in future papers. This result is shown for total coincidences of real number, not a similarity that it is used at verifications. It is a good result in this case because the result from the method index-of-max is 40 %.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xiaopeng Yang ◽  
Hui Zhu ◽  
Songnian Zhang ◽  
Rongxing Lu ◽  
Xuesong Gao

Biometric identification services have been applied to almost all aspects of life. However, how to securely and efficiently identify an individual in a huge biometric dataset is still very challenging. For one thing, biometric data is very sensitive and should be kept secure during the process of biometric identification. On the other hand, searching a biometric template in a large dataset can be very time-consuming, especially when some privacy-preserving measures are adopted. To address this problem, we propose an efficient and privacy-preserving biometric identification scheme based on the FITing-tree, iDistance, and a symmetric homomorphic encryption (SHE) scheme with two cloud servers. With our proposed scheme, the privacy of the user’s identification request and service provider’s dataset is guaranteed, while the computational costs of the cloud servers in searching the biometric dataset can be kept at an acceptable level. Detailed security analysis shows that the privacy of both the biometric dataset and biometric identification request is well protected during the identification service. In addition, we implement our proposed scheme and compare it to a previously reported M-Tree based privacy-preserving identification scheme in terms of computational and communication costs. Experimental results demonstrate that our proposed scheme is indeed efficient in terms of computational and communication costs while identifying a biometric template in a large dataset.


2021 ◽  
Author(s):  
Bader Samira ◽  
Rzouga Haddada Lamia ◽  
Essoukri Ben Amara Najoua

Author(s):  
Xingbo Dong ◽  
Soohyong Kim ◽  
Zhe Jin ◽  
Jung Yeon Hwang ◽  
Sangrae Cho ◽  
...  

Biometric cryptosystems such as fuzzy vaults represent one of the most popular approaches for secret and biometric template protection. However, they are solely designed for biometric verification, where the user is required to input both identity credentials and biometrics. Several practical questions related to the implementation of biometric cryptosystems remain open, especially in regard to biometric template protection. In this article, we propose a face cryptosystem for identification (FCI) in which only biometric input is needed. Our FCI is composed of a one-to-N search subsystem for template protection and a one-to-one match chaff-less fuzzy vault (CFV) subsystem for secret protection. The first subsystem stores N facial features, which are protected by index-of-maximum (IoM) hashing, enhanced by a fusion module for search accuracy. When a face image of the user is presented, the subsystem returns the top k matching scores and activates the corresponding vaults in the CFV subsystem. Then, one-to-one matching is applied to the k vaults based on the probe face, and the identifier or secret associated with the user is retrieved from the correct matched vault. We demonstrate that coupling between the IoM hashing and the CFV resolves several practical issues related to fuzzy vault schemes. The FCI system is evaluated on three large-scale public unconstrained face datasets (LFW, VGG2, and IJB-C) in terms of its accuracy, computation cost, template protection criteria, and security.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 849
Author(s):  
Hyeong In Choi ◽  
Sungjin Lee ◽  
Hwan Pyo Moon ◽  
Nam-Sook Wee ◽  
Daehoon Kim ◽  
...  

It is known that a variant of Ising model, called Seeded Ising Model, can be used to recover the information content of a biometric template from a fraction of information therein. The method consists in reconstructing the whole template, which is called the intruder template in this paper, using only a small portion of the given template, a partial template. This reconstruction method may pose a security threat to the integrity of a biometric identity management system. In this paper, based on the Seeded Ising Model, we present a systematic analysis of the possible security breach and its probability of accepting the intruder templates as genuine. Detailed statistical experiments on the intruder match rate are also conducted under various scenarios. In particular, we study (1) how best a template is divided into several small pieces called partial templates, each of which is to be stored in a separate silo; (2) how to do the matching by comparing partial templates in the locked-up silos, and letting only the results of these intra-silo comparisons be sent to the central tallying server for final scoring without requiring the whole templates in one location at any time.


2021 ◽  
Author(s):  
Md. Obaidul Malek

The principal challenge in biometric authentication is to mitigate the effects of any noise while extracting biometric features for biometric template generation. Most biometric systems are developed under the assumption that the extracted biometrics and the nature of their associated interferences are linear, stationary, and homogeneous. When these assumptions are violated due to nonlinear, nonstationary, and heterogeneous noise, the authentication performance deteriorates. As well, demands for biometric templates are on the rise in the field of information technology, leading to an increase in the vulnerability of stored and dynamic information. Thus, the development of a sophisticated authentication and encryption method is necessary to address these challenges. This dissertation proposes a new Sequential Subspace Estimator (SSE) algorithm for biometric authentication. In the proposed method, a sequential estimator is being designed in the image subspace that addresses challenges arising from nonlinear, nonstationary, and heterogeneous noise. The proposed method includes a subspace technique that overcomes the computational complexity associated with the sequential estimator. In addition, it includes a novel MultiBiometrics encryption algorithm that protects the biometric templates against security, privacy, and unlinkability attacks. Unlike current biometric encryption, this method uses cryptographic keys in conjunction with extracted MultiBiometrics to create cryptographic bonds, called “BioCryptoBond”. To further enhance system security and improve authentication accuracy, the development of a biometric database management system is also being considered. The proposed method is being tested on images from three public databases: the “Put Face Database”, the “Indian Face Database”, and the “CASIA Fingerprint Image Database Version 5.1”. The performance of the proposed solution has been evaluated using the Equal Error Rate (EER) and Correct Recognition Rate (CRR). The experimental results demonstrate the superiority of the proposed method in comparison to its counterparts.


Sign in / Sign up

Export Citation Format

Share Document