In the study, we report that a safe and simple way for upgrading inferior rubber wood through the combined modification of environment-friendly MUG resin was synthesized from glyoxal, melamine, urea, and other additives. MUG-treated wood samples were prepared with six different MUG resin concentrations (5, 15, 25, 35, 45, and 55 wt %) into the wood matrix and then heated and polymerized to form a solid and hydrophobic MUG resin in the wood scaffold, and the physico-mechanical properties were evaluated. As the MUG resin concentration increased, the weight percent gain and density increased, water uptake and leachability decreased, and the antiswelling efficiency increased at first and then decreased. MUG-treated wood sample can be prepared when the MUG resin concentration was set as 25%, and the physical properties of treated wood was optimum. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis showed that the MUG resin is widely distributed in the cell lumens and cell walls. With enhanced physico-mechanical properties, MUG-treated wood sample can be well used as a promising alternative to existing engineered wood products for structural applications.