cq algorithm
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 14)

H-INDEX

8
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3313
Author(s):  
Yan-Juan He ◽  
Li-Jun Zhu ◽  
Nan-Nan Tan

The CQ algorithm is widely used in the scientific field and has a significant impact on phase retrieval, medical image reconstruction, signal processing, etc. Moudafi proposed an alternating CQ algorithm to solve the split equality problem, but he only obtained the result of weak convergence. The work of this paper is to improve his algorithm so that the generated iterative sequence can converge strongly.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yusuf I. Suleiman ◽  
Poom Kumam ◽  
Habib ur Rehman ◽  
Wiyada Kumam

AbstractHe (J. Inequal. Appl. 2012:Article ID 162 2012) introduced the proximal point CQ algorithm (PPCQ) for solving the split equilibrium problem (SEP). However, the PPCQ converges weakly to a solution of the SEP and is restricted to monotone bifunctions. In addition, the step-size used in the PPCQ is a fixed constant μ in the interval $(0, \frac{1}{ \| A \|^{2} } )$ ( 0 , 1 ∥ A ∥ 2 ) . This often leads to excessive numerical computation in each iteration, which may affect the applicability of the PPCQ. In order to overcome these intrinsic drawbacks, we propose a robust step-size $\{ \mu _{n} \}_{n=1}^{\infty }$ { μ n } n = 1 ∞ which does not require computation of $\| A \|$ ∥ A ∥ and apply the adaptive step-size rule on $\{ \mu _{n} \}_{n=1}^{\infty }$ { μ n } n = 1 ∞ in such a way that it adjusts itself in accordance with the movement of associated components of the algorithm in each iteration. Then, we introduce a self-adaptive extragradient-CQ algorithm (SECQ) for solving the SEP and prove that our proposed SECQ converges strongly to a solution of the SEP with more general pseudomonotone equilibrium bifunctions. Finally, we present a preliminary numerical test to demonstrate that our SECQ outperforms the PPCQ.


2020 ◽  
Vol 25 (3) ◽  
pp. 47
Author(s):  
Guash Haile Taddele ◽  
Poom Kumam ◽  
Anteneh Getachew Gebrie ◽  
Kanokwan Sitthithakerngkiet

In this paper, we study an iterative method for solving the multiple-set split feasibility problem: find a point in the intersection of a finite family of closed convex sets in one space such that its image under a linear transformation belongs to the intersection of another finite family of closed convex sets in the image space. In our result, we obtain a strongly convergent algorithm by relaxing the closed convex sets to half-spaces, using the projection onto those half-spaces and by introducing the extended form of selecting step sizes used in a relaxed CQ algorithm for solving the split feasibility problem. We also give several numerical examples for illustrating the efficiency and implementation of our algorithm in comparison with existing algorithms in the literature.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 613
Author(s):  
Li Wei ◽  
Yibin Xin ◽  
Ruilan Zhang ◽  
Ravi P. Agarwal

In this paper, some new modified inertial-type multi-choice CQ-algorithms for approximating common fixed point of countable weakly relatively non-expansive mappings are presented in a real uniformly convex and uniformly smooth Banach space. New proof techniques are used to prove strong convergence theorems, which extend some previous work. The connection and application to maximal monotone operators are demonstrated. Numerical experiments are conducted to illustrate that the rate of convergence is accelerated compared to some previous ones for some special cases.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 608
Author(s):  
Andreea Bejenaru ◽  
Mihai Postolache

This paper introduces a new three-step algorithm to solve the split feasibility problem. The main advantage is that one of the projective operators interferes only in the final step, resulting in less computations at each iteration. An example is provided to support the theoretical approach. The numerical simulation reveals that the newly introduced procedure has increased performance compared to other existing methods, including the classic CQ algorithm. An interesting outcome of the numerical modeling is an approximate visual image of the solution set.


Sign in / Sign up

Export Citation Format

Share Document