<p style='text-indent:20px;'>A celebrated result in bifurcation theory is that, when the operators involved are compact, global connected sets of non-trivial solutions bifurcate from trivial solutions at non-zero eigenvalues of odd algebraic multiplicity of the linearized problem. This paper presents a simple example in which the hypotheses of the global bifurcation theorem are satisfied, yet all the path-connected components of the connected sets that bifurcate are singletons. Another example shows that even when the operators are everywhere infinitely differentiable and classical bifurcation occurs locally at a simple eigenvalue, the global continua may not be path-connected away from the bifurcation point. A third example shows that the non-trivial solutions which bifurcate at non-zero eigenvalues, irrespective of multiplicity when the problem has gradient structure, may not be connected and may not contain any paths except singletons.</p>