antigen elisa
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 25)

H-INDEX

22
(FIVE YEARS 1)

Author(s):  
Gianfranco Arroyo ◽  
Javier A. Bustos ◽  
Andres G. Lescano ◽  
Isidro Gonzales ◽  
Herbert Saavedra ◽  
...  

The diagnosis of NCC depends on neuroimaging and serological confirmation. While antibody detection by enzyme-linked immunoelectrotransfer blot (EITB) fails to predict viable NCC, EITB banding patterns provide information about the host’s infection course. Adding antigen ELISA results on EITB banding patterns may improve their ability to predict or rule out of viable NCC. We assessed whether combining EITB banding patterns with Ag-ELISA improves discrimination of viable infection in imaging-confirmed parenchymal NCC. EITB banding patterns were grouped into classes using latent class analysis. True-positive and false-negative Ag-ELISA results in each class were compared using Fisher’s exact test. Four classes were identified: 1 (EITB-negative or positive to GP50 alone [GP50 antigen family]), 2 (positive to GP42-39 and GP24 [T24/42 family], with or without GP50), 3 and 4 (positive to GP50, GP42-39 and GP24, and reacting to bands in the 8-kDa family). Most cases in classes 3 and 4 had viable NCC (82% and 88%) compared to classes 2 and 1 (53% and 5%). Adding positive Ag-ELISA results to class 2 predicted all viable NCC cases (22/22 [100%]), whereas 11/40 patients (27.5%) Ag-ELISA negative had viable NCC ( P < 0.001). Only 1/4 patients (25%) Ag-ELISA positive in class 1 had viable NCC, whereas 1/36 patients (2.8%) Ag-ELISA negative had viable NCC ( P = 0.192). In classes 3 and 4, adding Ag-ELISA was not contributory. Combining Ag-ELISA with EITB banding patterns improves discrimination of viable from non-viable NCC, particularly for class-2 responses. Together, these complement neuroimaging more appropriately for the diagnosis of viable NCC.


Author(s):  
Nihad Adnan ◽  
Shahad Saif Khandker ◽  
Ahsanul Haq ◽  
Mousumi Akter Chaity ◽  
Abdul Khalek ◽  
...  

2021 ◽  
Author(s):  
Erica D Dawson ◽  
Amber W. Taylor ◽  
James E. Johnson ◽  
Tianjing Hu ◽  
Caitlin McCormick ◽  
...  

Next generation poliovirus vaccines are critical to reaching global poliovirus eradication goals. Recent efforts have focused on creating inactivated vaccines using attenuated Sabin strains that maintain patient safety benefits and immunogenicity of conventional inactivated vaccines while increasing manufacturing safety and lowering production costs, and on developing novel oral vaccines using modified Sabin strains that provide critical mucosal immunity but are further attenuated to minimize risk of reversion to neurovirulence. In addition, there is a push to improve the analytical tools for poliovirus vaccine characterization. Conventional and Sabin inactivated poliovirus vaccines typically rely on standard plate-based ELISA as in vitro D-antigen potency assays in combination with WHO international standards as calibrants. While widely utilized, the current D-antigen ELISA assays have a long time to result (up to 72 hours), can suffer from lab-to-lab inconsistency due to non-standardized protocols and reagents, and are inherently singleplex. For D-antigen quantitation, we have developed the VaxArray Polio Assay Kit, a multiplexed, microarray-based immunoassay that uses poliovirus-specific human monoclonal antibodies currently under consideration as standardized reagents for characterizing inactivated Sabin and Salk vaccines. The VaxArray assay can simultaneously quantify all 3 poliovirus serotypes with a time to result of less than 3 hours. Here we demonstrate that the assay has limits of quantification suitable for both bioprocess samples and final vaccines, excellent reproducibility and precision, and improved accuracy over an analogous plate-based ELISA. The assay is suitable for adjuvanted combination vaccines, as common vaccine additives and crude matrices do not interfere with quantification, and is intended as a high throughput, standardized quantitation tool to aid inactivated poliovirus vaccine manufacturers in streamlining vaccine development and manufacturing, aiding the global polio eradication effort.


Dairy ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 425-434
Author(s):  
Isabel Blanco-Penedo ◽  
Vincent Obanda ◽  
Edward Kingori ◽  
Bernard Agwanda ◽  
Clas Ahlm ◽  
...  

Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne zoonotic disease, endemic in Africa, with a high case fatality rate. There is no efficient treatment or licensed vaccine. This study aimed to determine the prevalence of CCHFV in cattle in extensive grazing systems (both pastoralism and ranching) within the Maasai Mara ecosystem, Nanyuki, and the Ol Pejeta Conservancy in Kenya. We conducted a seroepidemiological study of the sera of 148 cattle from 18 households from the three ecosystems in 2014, 2016, and 2019. Sera from 23 sheep and 17 goats were also obtained from the same households during the same period. Sera were analyzed for the presence of antibodies to CCHFV using the commercially available double-antigen ELISA kit. Overall, 31.5% CCHFV seropositivity was observed. The prevalence of CCHF was analyzed using a multiple logistic mixed model with main predictors. Risk factors associated with exposure to CCHFV were age (p = 0.000) and season (p = 0.007). Our findings suggest exposure to CCHFV and point to cattle as likely reservoirs of CCHFV in Kenya. The findings might play a role in providing better insights into disease risk and dynamics where analysis of tick populations in these regions should be further investigated.


Author(s):  
Issaka Sagara ◽  
John Woodford ◽  
Mamady Kone ◽  
Mahamadoun Hamady Assadou ◽  
Abdoulaye Katile ◽  
...  

Abstract Background The extent of SARS-CoV-2 exposure and transmission in Mali and the surrounding region is not well understood. We aimed to estimate the cumulative incidence of SARS-CoV-2 in three communities, and understand factors associated with infection. Methods Between July 2020 and January 2021, we collected blood samples and demographic, social, medical, and self-reported symptoms information from residents aged 6 months and older over two study visits. SARS-CoV-2 antibodies were measured using a highly specific two-antigen ELISA optimized for use in Mali. We calculated cumulative adjusted seroprevalence for each community and evaluated factors associated with serostatus at each visit by univariate and multivariate analysis. Results Overall, 94.8% (2533/2672) of participants completed both study visits. A total of 31.3% (837/2672) were aged &lt;10 years, 27.6% (737/2672) were aged 10-17 years, and 41.1% (1098/2572) were aged ≥18 years. The cumulative SARS-CoV-2 exposure rate was 58.5% (95% CI: 47.5 to 69.4). This varied between sites and was 73.4% in the urban community of Sotuba, 53.2% in the rural town of Bancoumana, and 37.1% in the rural village of Donéguébougou. Study site and increased age were associated with serostatus at both study visits. There was minimal difference in reported symptoms based on serostatus. Conclusion The true extent of SARS-CoV-2 exposure in Mali is greater than previously reported and may now approach hypothetical ‘herd immunity’ in urban areas. The epidemiology of the pandemic in the region may be primarily subclinical and within background illness rates.


2021 ◽  
pp. 104063872110275
Author(s):  
Yixin Xiao ◽  
Fan Yang ◽  
Fumin Liu ◽  
Linfang Cheng ◽  
Hangping Yao ◽  
...  

Avian influenza A(H5) viruses (avian IAVs) pose a major threat to the economy and public health. We developed an antigen-ELISA (ag-ELISA) and a colloidal gold–based immunochromatographic strip for the rapid detection of avian A(H5) viruses. Both detection methods displayed no cross-reactivity with other viruses (e.g., other avian IAVs, infectious bursal disease virus, Newcastle disease virus, infectious bronchitis virus, avian paramyxovirus). The ag-ELISA was sensitive down to 0.5 hemagglutinin (HA) units/100 µL of avian A(H5) viruses and 7.5 ng/mL of purified H5 HA proteins. The immunochromatographic strip was sensitive down to 1 HA unit/100 µL of avian A(H5) viruses. Both detection methods exhibited good reproducibility with CVs < 10%. For 200 random poultry samples, the sensitivity and specificity of the ag-ELISA were 92.6% and 98.8%, respectively, and for test strips were 88.9% and 98.3%, respectively. Both detection methods displayed high specificity, sensitivity, and stability, making them suitable for rapid detection and field investigation of avian A(H5) viruses.


2021 ◽  
Author(s):  
Issaka Sagara ◽  
John Woodford ◽  
Mamady Kone ◽  
Mahamadoun Hamady Assadou ◽  
Abdoulaye Katile ◽  
...  

ABSTRACTBackgroundThe extent of SARS-CoV-2 exposure and transmission in Mali and the surrounding region is not well understood, although infection has been confirmed in nearly 14,000 symptomatic individuals and their contacts since the first case in March 2020. We aimed to estimate the cumulative incidence of SARS-CoV-2 in three Malian communities, and understand factors associated with infection.MethodsBetween 27 July 2020 and 29 January 2021, we collected blood samples along with demographic, social, medical and self-reported symptoms information from residents aged 6 months and older in three study communities at two study visits. SARS-CoV-2 antibodies were measured using a highly specific two-antigen ELISA optimized for use in Mali. We calculated cumulative adjusted seroprevalence for each site and evaluated factors associated with serostatus at each visit by univariate and multivariate analysis.FindingsOverall, 94.8% (2533/2672) of participants completed both study visits. A total of 50.3% (1343/2672) of participants were male, and 31.3% (837/2672) were aged <10 years, 27.6% (737/2672) were aged 10-17 years, and 41.1% (1098/2572) were aged ≥18 years. The cumulative SARS-CoV-2 exposure rate was 58.5% (95% CI: 47.5 to 69.4). This varied between sites and was 73.4% (95% CI: 59.2 to 87.5) in the urban community of Sotuba, 53.2% (95% CI: 42.8 to 63.6) in the rural town of Bancoumana, and 37.1% (95% CI: 29.6 to 44.5) in the rural village of Donéguébougou. This equates to an infection rate of approximately 1% of the population every three days in the study communities between visits. Increased age and study site were associated with serostatus at both study visits. There was minimal difference in reported symptoms based on serostatus.InterpretationThe true extent of SARS-CoV-2 exposure in Mali is greater than previously reported and now approaches hypothetical herd immunity in urban areas. The epidemiology of the pandemic in the region may be primarily subclinical and within background illness rates. In this setting, ongoing surveillance and augmentation of diagnostics to characterize locally circulating variants will be critical to implement effective mitigation strategies like vaccines.FundingThis project was funded by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institute of Biomedical Imaging and Bioengineering, and National Cancer Institute.


Author(s):  
Faria Hossain ◽  
Albert Picado ◽  
Sophie I. Owen ◽  
Prakash Ghosh ◽  
Rajashree Chowdhury ◽  
...  

With reduced prevalence of visceral leishmaniasis (VL) in the Indian subcontinent (ISC), direct and field deployable diagnostic tests are needed to implement an effective diagnostic and surveillance algorithm for post-elimination VL control. In this regard, here we investigated the diagnostic efficacies of a loop-mediated isothermal amplification (LAMP) assay (Loopamp™ Leishmania Detection Kit, Eiken Chemical CO., Ltd, Japan), a real-time quantitative PCR assay (qPCR) and the Leishmania antigen ELISA (CLIN-TECH, UK) with different sampling techniques and evaluated their prospect to incorporate into post-elimination VL control strategies. Eighty clinically and rK39 rapid diagnostic test confirmed VL cases and 80 endemic healthy controls were enrolled in the study. Peripheral blood and dried blood spots (DBS) were collected from all the participants at the time of diagnosis. DNA was extracted from whole blood (WB) and DBS via silica columns (QIAGEN) and boil &amp; spin (B&amp;S) methods and tested with qPCR and Loopamp. Urine was collected from all participants at the time of diagnosis and was directly subjected to the Leishmania antigen ELISA. 41 patients were followed up and urine samples were collected at day 30 and day 180 after treatment and ELISA was performed. The sensitivities of the Loopamp-WB(B&amp;S) and Loopamp-WB(QIA) were 96.2% (95% CI 89·43-99·22) and 95% (95% CI 87·69-98·62) respectively. The sensitivity of Loopamp-DBS(QIA) was 85% (95% CI 75·26- 92·00). The sensitivities of the qPCR-WB(QIA) and qPCR-DBS(QIA) were 93.8% (95% CI 86·01-97·94) and 72.5% (95% CI 61·38-81·90) respectively. The specificity of all molecular assays was 100%. The sensitivity and specificity of the Leishmania antigen ELISA were 97.5% (95% CI 91·47-99·70) and 91.95% (95% CI 84·12-96·70) respectively. The Leishmania antigen ELISA depicted clinical cure at day 180 in all the followed-up cases. Efficacy and sustainability identify the Loopamp-WB(B&amp;S) and the Leishmania antigen ELISA as promising and minimally invasive VL diagnostic tools to support VL diagnostic and surveillance activities respectively in the post-elimination era.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 713
Author(s):  
Joe James ◽  
Shelley Rhodes ◽  
Craig S. Ross ◽  
Paul Skinner ◽  
Samuel P. Smith ◽  
...  

SARS-CoV-2 virus was first detected in late 2019 and circulated globally, causing COVID-19, which is characterised by sub-clinical to severe disease in humans. Here, we investigate the serological antibody responses to SARS-CoV-2 infection during acute and convalescent infection using a cohort of (i) COVID-19 patients admitted to hospital, (ii) healthy individuals who had experienced ‘COVID-19 like-illness’, and (iii) a cohort of healthy individuals prior to the emergence of SARS-CoV-2. We compare SARS-CoV-2 specific antibody detection rates from four different serological methods, virus neutralisation test (VNT), ID Screen® SARS-CoV-2-N IgG ELISA, Whole Antigen ELISA, and lentivirus-based SARS-CoV-2 pseudotype virus neutralisation tests (pVNT). All methods were able to detect prior infection with COVID-19, albeit with different relative sensitivities. The VNT and SARS-CoV-2-N ELISA methods showed a strong correlation yet provided increased detection rates when used in combination. A pVNT correlated strongly with SARS-CoV-2 VNT and was able to effectively discriminate SARS-CoV-2 antibody positive and negative serum with the same efficiency as the VNT. Moreover, the pVNT was performed with the same level of discrimination across multiple separate institutions. Therefore, the pVNT is a sensitive, specific, and reproducible lower biosafety level alternative to VNT for detecting SARS-CoV-2 antibodies for diagnostic and research applications. Our data illustrate the potential utility of applying VNT or pVNT and ELISA antibody tests in parallel to enhance the sensitivity of exposure to infection.


Sign in / Sign up

Export Citation Format

Share Document