bace inhibitor
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 9)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Nash ◽  
H. J. M. Gijsen ◽  
B. J. Hrupka ◽  
K. S.-L. Teng ◽  
S. F. Lichtenthaler ◽  
...  

AbstractBACE inhibitors, which decrease BACE1 (β-secretase 1) cleavage of the amyloid precursor protein, are a potential treatment for Alzheimer’s disease. Clinical trials using BACE inhibitors have reported a lack of positive effect on patient symptoms and, in some cases, have led to increased adverse events, cognitive worsening and hippocampal atrophy. A potential drawback of this strategy is the effect of BACE inhibition on other BACE1 substrates such as Seizure-related gene 6 (Sez6) family proteins which are known to have a role in neuronal function. Mice were treated with an in-diet BACE inhibitor for 4–8 weeks to achieve a clinically-relevant level of amyloid-β40 reduction in the brain. Mice underwent behavioural testing and postmortem analysis of dendritic spine number and morphology with Golgi-Cox staining. Sez6 family triple knockout mice were tested alongside wild-type mice to identify whether any effects of the treatment were due to altered cleavage of Sez6 family proteins. Wild-type mice treated with BACE inhibitor displayed hyperactivity on the elevated open field, as indicated by greater distance travelled, but this effect was not observed in treated Sez6 triple knockout mice. BACE inhibitor treatment did not lead to significant changes in spatial or fear learning, reference memory, cognitive flexibility or anxiety in mice as assessed by the Morris water maze, context fear conditioning, or light–dark box tests. Chronic BACE inhibitor treatment reduced the density of mushroom-type spines in the somatosensory cortex, regardless of genotype, but did not affect steady-state dendritic spine density or morphology in the CA1 region of the hippocampus. Chronic BACE inhibition for 1–2 months in mice led to increased locomotor output but did not alter memory or cognitive flexibility. While the mechanism underlying the treatment-induced hyperactivity is unknown, the absence of this response in Sez6 triple knockout mice indicates that blocking ectodomain shedding of Sez6 family proteins is a contributing factor. In contrast, the decrease in mature spine density in cortical neurons was not attributable to lack of shed Sez6 family protein ectodomains. Therefore, other BACE1 substrates are implicated in this effect and, potentially, in the cognitive decline in longer-term chronically treated patients.


Author(s):  
David L. McKinzie ◽  
Leonard L. Winneroski ◽  
Steven J. Green ◽  
Erik J. Hembre ◽  
Jon A. Erickson ◽  
...  

2021 ◽  
Author(s):  
A. Nash ◽  
H. J. M. Gijsen ◽  
B. J. Hrupka ◽  
K. S-L. Teng ◽  
S. F. Lichtenthaler ◽  
...  

Abstract BackgroundBACE inhibitors, which decrease BACE1 (β-secretase 1) cleavage of the amyloid precursor protein, are a potential treatment for Alzheimer’s disease. Clinical trials using BACE inhibitors have reported a lack of positive effect on patient symptoms and, in some cases, have led to increased adverse events, cognitive worsening and hippocampal atrophy. A potential drawback of this strategy is the effect of BACE inhibition on other BACE1 substrates such as Seizure-related gene 6 (Sez6) family proteins which are known to have a role in neuronal function.MethodsMice were treated with an in-diet BACE inhibitor for 4-8 weeks to achieve a clinically-relevant level of amyloid-β40 reduction in the brain. Mice underwent behavioural testing and postmortem analysis of dendritic spine number and morphology with Golgi-Cox staining. Sez6 family triple knockout mice were tested alongside wild-type mice to identify whether any effects of the treatment were due to altered cleavage of Sez6 family proteins.ResultsWild-type mice treated with BACE inhibitor displayed hyperactivity on the elevated open field, as indicated by greater distance travelled, but this effect was not observed in treated Sez6 triple knockout mice. BACE inhibitor treatment did not lead to significant changes in spatial or fear learning, reference memory, cognitive flexibility or anxiety in mice as assessed by the Morris water maze, context fear conditioning, or light-dark box tests. Chronic BACE inhibitor treatment reduced the density of mushroom-type spines in the somatosensory cortex, regardless of genotype, but did not affect steady-state dendritic spine density or morphology in the CA1 region of the hippocampus. ConclusionsChronic BACE inhibition for 1-2 months in mice led to increased locomotor output but did not alter memory or cognitive flexibility. While the mechanism underlying the treatment-induced hyperactivity is unknown, the absence of this response in Sez6 triple knockout mice indicates that blocking ectodomain shedding of Sez6 family proteins is a contributing factor. In contrast, the decrease in mature spine density in cortical neurons was not attributable to lack of shed Sez6 family protein ectodomains. Therefore, other BACE1 substrates are implicated in this effect and, potentially, in the cognitive decline in longer-term chronically treated patients.


Allergy ◽  
2020 ◽  
Author(s):  
Paul J. Thomson ◽  
Laila Kafu ◽  
Xiaoli Meng ◽  
Jan Snoeys ◽  
An De Bondt ◽  
...  

Author(s):  
M.N. Sabbagh

On March 21, 2019, the aducanumab development team conducting the EMERGE and ENGAGE studies announced that the trials had met a pre-specified futility endpoint (1). The consequences of that announcement were far reaching, as many companies that had invested heavily in targeting amyloid were left to consider if targeting amyloid still remained a viable strategy for developing effective Alzheimer’s disease (AD) therapeutics. Following that announcement, the remaining BACE inhibitor trials announced safety concerns or efficacy concerns effectively ending elenbecestat, umibecestat, lanabecestat, atabecestat, and verubecestat as possible treatments for AD (2). Given that gamma secretase inhibitors and modulators had failed in the past, altering or halting production of amyloid appears to no longer offer viable therapeutic benefits moving forward. To further complicate this already troubling situation, the TMS/cognitive stimulation treatment combination (3) has not received FDA approval.


2019 ◽  
Vol 15 ◽  
pp. P595-P595
Author(s):  
Naoto Watanabe ◽  
Yasuaki Goto ◽  
Ayano Kimura ◽  
Kunihiko Kanatsu ◽  
Masafumi Tsuboi ◽  
...  

2019 ◽  
Vol 19 (7) ◽  
pp. 599-602 ◽  
Author(s):  
Francesco Panza ◽  
Madia Lozupone ◽  
Mark Watling ◽  
Bruno Pietro Imbimbo

Sign in / Sign up

Export Citation Format

Share Document