wave resonator
Recently Published Documents


TOTAL DOCUMENTS

608
(FIVE YEARS 102)

H-INDEX

31
(FIVE YEARS 3)

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 87
Author(s):  
Tiancheng Luo ◽  
Yan Liu ◽  
Yang Zou ◽  
Jie Zhou ◽  
Wenjuan Liu ◽  
...  

Radio frequency (RF) filters with multiple passbands can meet the needs of miniaturization and integration for 5G communications. This paper reports a dual-mode Lamb wave resonator (DLWR) and a dual-passband filter based on DLWRs. The DLWR consists of a piezoelectric film and two interdigital electrode (IDT) arrays with different thicknesses, which leads to the coexistence of two main modes in the resonator. The resonance frequencies of the two modes can be adjusted separately by changing the thicknesses of the IDTs, which greatly satisfies the requirements of the dual-passband filter. Four DLWRs with different electrode configurations are designed, and the influences of the periodic length and thicknesses of the IDTs on the performance of the DLWR are studied. When the thickness of the piezoelectric layer is 0.75 μm and the two thicknesses of the IDTs are 0.1 μm and 0.3 μm, the resonance frequency of the second main mode is 1.27 GHz higher than the resonance frequency of the first main mode in the DLWR. Furthermore, a dual-passband filter based on the proposed DLWRs is demonstrated with an insertion loss less than 1 dB and a band rejection of about 15 dB. Moreover, two passbands at 2.45 GHz and 3.88 GHz with bandwidths of 66 MHz and 112 MHz, respectively, are achieved. The presented DLWR shows a potential application that can be used to obtain RF filters with adjustable dual passbands.


Author(s):  
Ting Wu ◽  
Yu-Po Wong ◽  
Yiwen He ◽  
Jing-Fu Bao ◽  
Ken-ya Hashimoto

Abstract Abstract: This paper discusses applicability of periodically slotted electrodes for realization of wideband transversely-coupled double-mode resonator filters using lithium niobate (LN) thin plate. First, two-dimensional analysis is carried out, and it is shown that the periodic structure is effective to control the frequency separation between two resonance modes, and synthesis of the fractional bandwidth larger than 24% is achievable. Next, 3D analysis is performed for suppression of spurious resonances. It is shown that the mass loading at aperture edges is effective for the piston mode operation, and transverse modes can be well suppressed. It is also pointed out that the bottom electrode should be covered only the aperture region and removed from the busbar and gap regions for suppression of unwanted resonances. With these proper edge treatments, spurious-free and wide passband can be synthesized.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhenzhong Zuo ◽  
Kaile Wang ◽  
Haowei Chen ◽  
Baole Lu ◽  
Jintao Bai

Since 2011, when Kir’yanov et al. first reported a new wavelength self-sweeping ytterbium-doped fiber laser that does not rely on any tuning element but only on the dynamic induced grating generated in the gain fiber by the standing wave resonator structure, the self-sweeping effect based on fiber waveguides has been extensively studied, leading to great progress in fundamental physics and other applications of self-sweeping fiber lasers. Different doped fiber lasers have not only achieved the self-sweeping effect, but also observed new phenomena such as anomalous self-sweeping and continuous pulses. Due to their remarkable spectral and pulsed characteristics, self-sweeping fiber lasers have been widely used in spectral detection, fiber sensing and short pulse synthesis. In this paper, we will introduce the classification of different doped self-sweeping fiber lasers, summarize their different implementations, and introduce their self-sweeping laws, pulse characteristics, recent progress of applications and future development prospects.


2021 ◽  
Vol 23 (12) ◽  
pp. 123001
Author(s):  
Gang-hui Zeng ◽  
Yang Zhang ◽  
Aleksey N Bolgar ◽  
Dong He ◽  
Bin Li ◽  
...  

Abstract We experimentally study a circuit quantum acoustodynamics system with a superconducting artificial atom coupled to both a two-dimensional surface acoustic wave resonator and a one-dimensional microwave transmission line. The strong coupling between the artificial atom and the acoustic wave resonator is confirmed by the observation of the vacuum Rabi splitting at the base temperature of dilution refrigerator. We show that the propagation of microwave photons in the microwave transmission line can be controlled by a few phonons in the acoustic wave resonator. Furthermore, we demonstrate the temperature effect on the measurements of the Rabi splitting and temperature induced transitions from high excited dressed states. We find that the spectrum structure of two-peak for the Rabi splitting could become into those of several peaks under some special experimental conditions, and gradually disappears with the increase of the environmental temperature T. The continuous quantum-to-classical crossover is observed around the crossover temperature T c, which is determined via the thermal fluctuation energy k B T and the characteristic energy level spacing of the coupled system. Experimental results agree well with the theoretical simulations via the master equation of the coupled system at different effective temperatures.


2021 ◽  
Vol 33 (23) ◽  
pp. 1333-1336
Author(s):  
Chao Yang ◽  
Bing Xu ◽  
Boheng Lai ◽  
Chunxuan Su ◽  
Shiqing Ma ◽  
...  

2021 ◽  
Vol 11 (21) ◽  
pp. 10228
Author(s):  
Ran You ◽  
Jiuling Liu ◽  
Minghua Liu ◽  
Yuxiang Zhang ◽  
Zhiyuan Chen ◽  
...  

In the detection of small size mass loading, such as a single cell, a micro droplet or an aerosol particle, the sensors with longitudinally coupled surface acoustic wave resonator (LC-SAWR) structure can hardly avoid waveform distortions. The relative size of mass loading to the sensitive surface of the detector is the main factor affecting the response of LC-SAWR. The smaller the relative size, the worse the waveform distortion. In order to avoid influences from the mass loading’s size, in this paper, a transversely coupled SAW resonator (TC-SAWR) was proposed in order to achieve high performance in sensing small size mass loadings. For the design and simulation of TC-SAWR, the two-dimensional coupling of model (2D-COM) theory and finite element method (FEM) were used in this work. In the experiment, SiO2 was deposited on the sensor’s surface as a small size mass loading. The results from simulation and experiment mutually demonstrated the advantage of TC-SAWR to conquer waveform distortion in the detection of small size mass loading.


Author(s):  
Zlatica Marinkovic ◽  
Giovanni Gugliandolo ◽  
Antonino Quattrocchi ◽  
Giovanni Crupi ◽  
Nicola Donato

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6800
Author(s):  
Jizhou Hu ◽  
Hemi Qu ◽  
Wei Pang ◽  
Xuexin Duan

A microfluidic film bulk acoustic wave resonator gas sensor (mFBAR) adapted specifically as an in-line detector in gas chromatography was described. This miniaturized vapor sensor was a non-destructive detector with very low dead volume (0.02 μL). It was prepared by enclosing the resonator in a microfluidic channel on a chip with dimensions of only 15 mm × 15 mm × 1 mm. The device with polymer coating showed satisfactory performance in the detection of organophosphorus compound, demonstrating a very low detection limit (a dozen parts per billion) with relatively short response time (about fifteen seconds) toward the simulant of chemical warfare agent, dimethyl methylphosphonate. The in-line detection of the mFBAR sensor with FID was constructed and employed to directly measure the concentration profile on the solid surface by the mFBAR with the controlled concentration profile in the mobile phase at the same time. The difference of peak-maximum position between mobile phase and solid phase could be a convenient indicator to measure mass transfer rate. With the response of the mFBAR and FID obtained in one injection, an injection mass-independent parameter can be calculated and used to identify the analyte of interest.


Sign in / Sign up

Export Citation Format

Share Document