carrier mediated transport
Recently Published Documents


TOTAL DOCUMENTS

345
(FIVE YEARS 6)

H-INDEX

46
(FIVE YEARS 1)

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Gerardo León ◽  
Elisa Gómez ◽  
Beatriz Miguel ◽  
Asunción María Hidalgo ◽  
María Gómez ◽  
...  

Emulsion liquid membranes have been successfully used for the removal of different types of organic and inorganic pollutants by means of carrier-mediated transport mechanisms. However, the models that describe the kinetics and transport of such mechanisms are very complex due to the high number of model parameters. Starting from an analysis of the similarity between the elemental mechanisms of carrier-mediated transport in liquid membranes and of transport in adsorption processes, this paper presents an experimental analysis of the possibility of applying kinetic and mechanistic models developed for adsorption to carrier-mediated transport in emulsion liquid membranes. We study the removal of a target species, in this case, Cu(II), by emulsion liquid membranes containing membrane phase solutions of benzoylacetone (carrier agent), Span 80 (emulsifying agent) and kerosene (diluent), and hydrochloric acid as a stripping agent in the product phase. The experimental results fit the pseudo-second-order adsorption kinetic model, showing good relationships between the experimental and model parameters. Although both Cu(II) diffusion through the feed/membrane interface boundary layer and complex Cu-benzoylacetone diffusion through the membrane phase controls Cu(II) transport, it is the former step that mainly controls the transport process.


Author(s):  
Bholanath Mahanty ◽  
Ananda Karak ◽  
Prasanta K. Mohapatra ◽  
Richard J.M. Egberink ◽  
Thichur P. Valsala ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 272
Author(s):  
Arik Dahan ◽  
Isabel González-Álvarez

The gastrointestinal tract (GIT) can be broadly divided into several regions: the stomach, the small intestine (which is subdivided to duodenum, jejunum, and ileum), and the colon. The conditions and environment in each of these segments, and even within the segment, are dependent on many factors, e.g., the surrounding pH, fluid composition, transporters expression, metabolic enzymes activity, tight junction resistance, different morphology along the GIT, variable intestinal mucosal cell differentiation, changes in drug concentration (in cases of carrier-mediated transport), thickness and types of mucus, and resident microflora. Each of these variables, alone or in combination with others, can fundamentally alter the solubility/dissolution, the intestinal permeability, and the overall absorption of various drugs. This is the underlying mechanistic basis of regional-dependent intestinal drug absorption, which has led to many attempts to deliver drugs to specific regions throughout the GIT, aiming to optimize drug absorption, bioavailability, pharmacokinetics, and/or pharmacodynamics. In this Editorial we provide an overview of the Special Issue "Regional Intestinal Drug Absorption: Biopharmaceutics and Drug Formulation". The objective of this Special Issue is to highlight the current progress and to provide an overview of the latest developments in the field of regional-dependent intestinal drug absorption and delivery, as well as pointing out the unmet needs of the field.


Drug Research ◽  
2020 ◽  
Author(s):  
Meenakshi Dhanawat ◽  
Sumeet Gupta ◽  
Dinesh Kumar Mehta ◽  
Rina Das

Nipecotic acid is considered to be one of the most potent inhibitors of neuronal and glial-aminobutyric acid (GABA) uptake in vitro. Due to its hydrophilic nature, nipecotic acid does not readily cross the blood-brain barrier (BBB). Large neutral amino acids (LAT1)-knotted nipecotic acid prodrug was designed and synthesized with the aim to enhance the BBB permeation by the use of carrier-mediated transport. The synthesized prodrug was tested in animal models of Pentylenetetrazole (PTZ)-induced convulsions in mice. Further pain studies were carried out followed by neurotoxicity estimation by writhing and rota-rod test respectively. HPLC data suggests that the synthesized prodrug has improved penetration through BBB. Nipecotic acid-L-serine ester prodrug with considerable anti-epileptic activity, and the ability to permeate the BBB has been successfully synthesized. Graphical Abstract.


2019 ◽  
Vol 75 (6) ◽  
pp. 1507-1516 ◽  
Author(s):  
Hanxiang Wu ◽  
Hanhong Xu ◽  
Cécile Marivingt‐Mounir ◽  
Jean‐Louis Bonnemain ◽  
Jean‐François Chollet

2017 ◽  
Vol 99 (5-6) ◽  
pp. 760-771 ◽  
Author(s):  
Farhad Ghamari ◽  
Abdulrahman Bahrami ◽  
Yadollah Yamini ◽  
Farshid Ghorbani Shahna ◽  
Abbas Moghimbeigi

2017 ◽  
Vol 40 (9) ◽  
pp. 1599-1603 ◽  
Author(s):  
Shin-ichi Akanuma ◽  
Hirokazu Shimada ◽  
Yoshiyuki Kubo ◽  
Ken-ichi Hosoya

Sign in / Sign up

Export Citation Format

Share Document