In this research is solved the problem for determining of dependencies describing the strength redundancy of a part obtained by means of topology optimization using the SIMP method under a variety of grid’s finite elements. For this purpose, in the research was performed a digital experiment, during which almost fifty variants of part’s computer models were obtained, and their mechanical properties were studied. Based on the obtained data were constructed plots for the strength efficiency of topological optimization, which reflect fractal properties of part’s strength parameters changing.
Upon reaching the research goal were solved the problems of software selection and applying a programs combination, which allowed automate the creation of models based on the topology optimization results. The main tool for topology optimization was the Autodesk Fusion 360 product, providing a free access to cloud computing, and Autodesk ReCap Photo was used when models converting.
On the results of the experiment were formulated recommendations for obtaining the part’s optimized topology without critical defects of shape, using the SIMP method. With great probability, these recommendations are important when using other methods for topological optimization, such as ESO, BESO, or Level-Set.
The received recommendations were tested in solution the problem of increasing the structures’ strength efficiency on the example of the rocker-Bogie wheel suspension using in modern Curiosity-type Mars rovers. The topology optimization results are openwork parts that can withstand heavy loads at low weight. This was confirmed by strength analysis, which had showed an increase in specific strength up to 13.5 times, relative to the prototype used in the Curiosity-type Mars rover’s suspension.