strain ms11
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 0)

H-INDEX

15
(FIVE YEARS 0)

2013 ◽  
Vol 81 (7) ◽  
pp. 2358-2370 ◽  
Author(s):  
Alexandra Roth ◽  
Corinna Mattheis ◽  
Petra Muenzner ◽  
Magnus Unemo ◽  
Christof R. Hauck

ABSTRACTMembers of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family serve as cellular receptors forNeisseria gonorrhoeae. More specifically, neisserial colony opacity (OpaCEA) proteins bind to epithelial CEACAMs (CEACAM1, CEA, CEACAM6) to promote bacterial colonization of the mucosa. In contrast, recognition by CEACAM3, expressed by human granulocytes, results in uptake and destruction of OpaCEA-expressing bacteria. Therefore, CEACAM3-mediated uptake might limit the spread of gonococci. However, some strains can cause disseminating gonococcal infections (DGIs), and it is currently unknown how these strains escape detection by granulocyte CEACAM3. Therefore, theopagene loci fromN. gonorrhoeaestrain VP1, which was derived from a patient with disseminated gonococcal disease, were cloned and constitutively expressed inEscherichia coli. Similar to Opa proteins of the nondisseminating strain MS11, the majority of Opa proteins from strain VP1 bound epithelial CEACAMs and promoted CEACAM-initiated responses by epithelial cells. In sharp contrast to the Opa proteins of strain MS11, the Opa proteins of strain VP1 failed to interact with the human granulocyte receptor CEACAM3. Accordingly, bacteria expressing VP1 Opa proteins were not taken up by primary human granulocytes and did not trigger a strong oxidative burst. Analysis of Opa variants from four additional clinical DGI isolates again demonstrated a lack of CEACAM3 binding. In summary, our results reveal that particularN. gonorrhoeaestrains express an Opa protein repertoire allowing engagement of epithelial CEACAMs for successful mucosal colonization, while avoiding recognition and elimination via CEACAM3-mediated phagocytosis. A failure of CEACAM3-mediated innate immune detection might be linked to the ability of gonococci to cause disseminated infections.


2012 ◽  
Vol 194 (23) ◽  
pp. 6468-6478 ◽  
Author(s):  
Adriana LeVan ◽  
Lindsey I. Zimmerman ◽  
Amanda C. Mahle ◽  
Karen V. Swanson ◽  
Philip DeShong ◽  
...  

ABSTRACTTo better understand the role of Opa in gonococcal infections, we created and characterized a derivative of MS11 (MS11Δopa) that had the coding sequence for all 11 Opa proteins deleted. The MS11Δopa bacterium lost the ability to bind to purified lipooligosaccharide (LOS). While nonpiliated MS11Δopa and nonpiliated Opa-expressing MS11 cells grew at the same rate, nonpiliated MS11Δopa cells rarely formed clumps of more than four bacteria when grown in broth with vigorous shaking. Using flow cytometry analysis, we demonstrated that MS11Δopa produced a homogeneous population of bacteria that failed to bind monoclonal antibody (MAb) 4B12, a MAb specific for Opa. Opa-expressing MS11 cells consisted of two predominant populations, where ∼85% bound MAb 4B12 to a significant level and the other population bound little if any MAb. Approximately 90% of bacteria isolated from a phenotypically Opa-negative colony (a colony that does not refract light) failed to bind MAb 4B12; the remaining 10% bound MAb to various degrees. Piliated MS11Δopa cells formed dispersed microcolonies on ME180 cells which were visually distinct from those of piliated Opa-expressing MS11 cells. When Opa expression was reintroduced into MS11Δopa, the adherence ability of the strain recovered to wild-type levels. These data indicate that Opa contributes to both bacterium-bacterium and bacterium-host cell interactions.


2010 ◽  
Vol 192 (14) ◽  
pp. 3822-3823 ◽  
Author(s):  
R. Allen Helm ◽  
H. Steven Seifert

ABSTRACT The rates of pilin antigenic variation (Av) of two strains of Neisseria meningitidis were determined using an unbiased DNA sequencing assay. Strain MC58 underwent pilin Av at a rate similar to that of N. gonorrhoeae strain MS11 but lower than that of N. gonorrhoeae strain FA1090. Pilin Av was undetectable in strain FAM18.


2008 ◽  
Vol 77 (3) ◽  
pp. 1091-1102 ◽  
Author(s):  
Hong Wu ◽  
Ángel A. Soler-García ◽  
Ann E. Jerse

ABSTRACT The hallmark of gonorrhea is an intense inflammatory response that is characterized by polymorphonuclear leukocytes (PMNs) with intracellular gonococci. A redundancy of defenses may protect Neisseria gonorrhoeae from phagocyte-derived reactive oxygen species. Here we showed that a gonococcal catalase (kat) mutant in strain MS11 was more sensitive to H2O2 than mutants in cytochrome c peroxidase (ccp), methionine sulfoxide reductase (msrA), or the metal-binding protein (mntC) of the MntABC transporter. kat ccp and kat ccp mntC mutants were significantly more sensitive to H2O2 than mutants in any single factor. None of the mutants showed increased susceptibility to murine PMNs. Recovery of the mntC and kat ccp mntC mutants from the lower genital tract of BALB/c mice, but not the kat or kat ccp mutants, was significantly reduced relative to wild-type bacteria. Interestingly, unlike the MS11 kat mutant, a kat mutant of strain FA1090 was attenuated during competitive infection with wild-type FA1090 bacteria. The FA1090 kat mutant and MS11 mntC mutant were also attenuated in mice that are unable to generate a phagocytic respiratory burst. We conclude that inactivation of three well-characterized antioxidant genes (kat, ccp, and mntC) does not increase gonococcal susceptibility to the phagocytic respiratory burst during infection and that gonococcal catalase and the MntC protein confer an unidentified advantage in vivo. In the case of catalase, this advantage is strain specific. Finally, we also showed that an msrA mutant of strain MS11 demonstrated delayed attenuation in BALB/c but not C57BL/6 mice. Therefore, MsrA/B also appears to play a role in infection that is dependent on host genetic background.


2007 ◽  
Vol 189 (22) ◽  
pp. 7983-7990 ◽  
Author(s):  
Stuart A. Hill ◽  
Tracy Woodward ◽  
Andrew Reger ◽  
Rachel Baker ◽  
Theresa Dinse

ABSTRACT The role of the RecBCD recombination pathway in PilE antigenic variation in Neisseria gonorrhoeae is contentious and appears to be strain dependent. In this study, N. gonorrhoeae strain MS11 recB mutants were assessed for recombination/repair. MS11 recB mutants were found to be highly susceptible to DNA treatments that caused double-chain breaks and were severely impaired for growth; recB growth suppressor mutants arose at high frequencies. When the recombination/repair capacity of strain MS11 was compared to that of strains FA1090 and P9, innate differences were observed between the strains, with FA1090 and P9 rec + bacteria presenting pronounced recombination/repair defects. Consequently, MS11 recB mutants present a more robust phenotype than the other strains that were tested. In addition, MS11 recB mutants are also shown to be defective for pilE/pilS recombination. Moreover, pilE/pilS recombination is shown to proceed with gonococci that carry inverted pilE loci. Consequently, a novel RecBCD-mediated double-chain-break repair model for PilE antigenic variation is proposed.


Microbiology ◽  
2005 ◽  
Vol 151 (12) ◽  
pp. 4005-4013 ◽  
Author(s):  
Lori A. S. Snyder ◽  
Stephen A. Jarvis ◽  
Nigel J. Saunders

Comparative genome hybridization using the pan-Neisseria microarray identified genes from the gonococcal genetic island (GGI) within Neisseria meningitidis strains of serogroups W-135, H, and Z. While some of these strains contain nearly all of the genes of the GGI, there are differences in the presence of some of these genes between the strains, including between those of the same serogroup. Attempts were then made to determine the location of the GGI in these meningococci. Sequencing of Neisseria gonorrhoeae strain MS11 revealed that the GGI is a conjugative plasmid that can be chromosomally integrated at the dif sites near ung and can also be present in its circularized form. In N. meningitidis, a dif site is present in this location and also serves as the point of chromosomal integration of the GGI in this species.


Microbiology ◽  
2003 ◽  
Vol 149 (10) ◽  
pp. 2879-2890 ◽  
Author(s):  
Peter Rapp ◽  
Lotte H. E. Gabriel-Jürgens

Rhodococcus sp. strain MS11 was isolated from a mixed culture. It displays a diverse range of metabolic capabilities. During growth on 1,2,4-trichlorobenzene, 1,2,4,5-tetrachlorobenzene (1,2,4,5-TeCB) and 3-chlorobenzoate stoichiometric amounts of chloride were released. It also utilized all three isomeric dichlorobenzenes and 1,2,3-trichlorobenzene as the sole carbon and energy source. Furthermore, the bacterium grew well on a great number of n-alkanes ranging from n-heptane to n-triacontane and on the branched alkane 2,6,10,14-tetramethylpentadecane (pristane) and slowly on n-hexane and n-pentatriacontane. It was able to grow at temperatures from 5 to 30 °C, with optimal growth at 20 °C, and could tolerate 6 % NaCl in mineral salts medium. Genes encoding the initial chlorobenzene dioxygenase were detected by using a primer pair that was designed against the α-subunit (TecA1) of the chlorobenzene dioxygenase of Ralstonia (formerly Burkholderia) sp. strain PS12. The amino acid sequence of the amplified part of the α-subunit of the chlorobenzene dioxygenase of Rhodococcus sp. strain MS11 showed >99 % identity to the α-subunit of the chlorobenzene dioxygenase from Ralstonia sp. strain PS12 and the parts of both α-subunits responsible for substrate specificity were identical. The subsequent enzymes dihydrodiol dehydrogenase and chlorocatechol 1,2-dioxygenase were induced in cells grown on 1,2,4,5-TeCB. During cultivation on medium-chain-length n-alkanes ranging from n-decane to n-heptadecane, including 1-hexadecene, and on the branched alkane pristane, strain MS11 produced biosurfactants lowering the surface tension of the cultures from 72 to ⩽29 mN m−1. Glycolipids were extracted from the supernatant of a culture grown on n-hexadecane and characterized by 1H- and 13C-NMR-spectroscopy and mass spectrometry. The two major components consisted of α,α-trehalose esterified at C-2 or C-4 with a succinic acid and at C-2′ with a decanoic acid. They differed from one another in that one 2,3,4,2′-trehalosetetraester, found in higher concentration, was esterified at C-2, C-3 or C-4 with one octanoic and one decanoic acid and the other one, of lower concentration, with two octanoic acids. The results demonstrate that Rhodococcus sp. strain MS11 may be well suited for bioremediation of soils and sediments contaminated for a long time with di-, tri- and tetrachlorobenzenes as well as alkanes.


2002 ◽  
Vol 70 (4) ◽  
pp. 1715-1723 ◽  
Author(s):  
Martine P. Bos ◽  
David Kao ◽  
Daniel M. Hogan ◽  
Christopher C. R. Grant ◽  
Robert J. Belland

ABSTRACT Neisserial Opa proteins function as a family of adhesins that bind heparan sulfate proteoglycan (HSPG) or carcinoembryonic antigen family (CEACAM) receptors on human host cells. In order to define the CEACAM binding domain on Opa proteins, we tested the binding properties of a series of gonococcal (strain MS11) recombinants producing mutant and chimeric Opa proteins with alterations in one or more of the four surface-exposed loops. Mutagenesis demonstrated that the semivariable domain, present in the first loop, was completely dispensable for CEACAM binding. In contrast, the two hypervariable (HV) regions present in the second and third loops were essential for binding; deletion of either domain resulted in loss of receptor recognition. Deletion of the fourth loop resulted in a severe decrease in Opa expression at the cell surface and could therefore not be tested for CEACAM binding. Chimeric Opa variants, containing combinations of HV regions derived from different CEACAM binding Opa proteins, lost most of their receptor binding activity. Some chimeric variants gained HSPG binding activity. Together, our results indicate that full recognition of CEACAM receptors by Opa proteins requires a highly coordinate interplay between both HV regions. Furthermore, shuffling of HV regions may result in novel HSPG receptor binding activity.


2000 ◽  
Vol 68 (12) ◽  
pp. 6526-6534 ◽  
Author(s):  
Susie Y. Minor ◽  
Asesh Banerjee ◽  
Emil C. Gotschlich

ABSTRACT The genes encoding the glycosyltransferases responsible for the addition of the five sugars in the α-oligosaccharide (α-OS) moiety of lipooligosaccharide (LOS) have been identified. Disruption of these glycosyltransferase genes singly or in combination results in corresponding truncations in LOS. In the present work we show that sequential deletion of the terminal four sugar residues of gonococcal α-OS had no discernible effect on the invasion of human conjunctival, endometrial, and cervical cell lines. However, deletion of the proximal glucose, which resulted in the complete deletion of α-OS, significantly impaired invasion of the gonococci into all three cell lines. The effect of deleting α-OS on invasion was independent of and additive to the known invasion-promoting factor OpaA. These data suggest that the proximal glucose residue of the α-OS chain of LOS is required for efficient invasion of gonococci into host mucosa.


1999 ◽  
Vol 190 (3) ◽  
pp. 331-340 ◽  
Author(s):  
Martine P. Bos ◽  
Daniel Hogan ◽  
Robert J. Belland

The immunoglobulin-like family of CD66 antigens, present on human neutrophils and epithelial cells, are used as receptors for adhesins expressed by the pathogenic Neisseriae. N. gonorrhoeae strain MS11 can express 11 isoforms of these adhesins, called opacity-related (Opa) proteins. Each MS11 Opa protein recognizes a distinct spectrum of CD66 receptors. CD66–Opa binding is mediated by the NH2-terminal domain of the receptor and occurs through protein–protein interactions. In this report, we have investigated the molecular basis for the binding between the CD66 and Opa protein families by mapping amino acids in CD66 receptors that determine Opa protein binding. We performed homologue scanning mutagenesis between CD66e, which binds multiple Opa variants, and CD66b, which binds none, and tested both loss-of-function by CD66e and gain-of-function by CD66b in solution assays and in assays involving full-length receptors expressed by epithelial cells. We found that three residues in the CD66e N-domain are required for maximal Opa protein receptor activity. Opa proteins that recognize the same spectrum of native CD66 molecules showed differential binding of receptors with submaximal activity, indicating that the binding characteristics of these Opa proteins are actually slightly different. These data provide a first step toward resolving the structural requirements for Opa–CD66 interaction.


Sign in / Sign up

Export Citation Format

Share Document