rossby wave propagation
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 10)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
YUE BAI ◽  
YAN WANG ◽  
ANDREW L. STEWART

AbstractTopographic form stress (TFS) plays a central role in constraining the transport of the Antarctic Circumpolar Current (ACC), and thus the rate of exchange between the major ocean basins. Topographic form stress generation in the ACC has been linked to the formation of standing Rossby waves, which occur because the current is retrograde (opposing the direction of Rossby wave propagation). However, it is unclear whether TFS similarly retards current systems that are prograde (in the direction of Rossby wave propagation), which cannot arrest Rossby waves. An isopycnal model is used to investigate the momentum balance of wind-driven prograde and retrograde flows in a zonal channel, with bathymetry consisting of either a single ridge or a continental shelf and slope with a meridional excursion. Consistent with previous studies, retrograde flows are almost entirely impeded by TFS, except in the limit of flat bathymetry, whereas prograde flows are typically impeded by a combination of TFS and bottom friction. A barotropic theory for standing waves shows that bottom friction serves to shift the phase of the standing wave’s pressure field from that of the bathymetry, which is necessary to produce TFS. The mechanism is the same in prograde and retrograde flows, but is most efficient when the mean flow arrests a Rossby wave with a wavelength comparable to that of the bathymetry. The asymmetry between prograde and retrograde momentum balances implies that prograde current systems may be more sensitive to changes in wind forcing, for example associated with climate shifts.


2021 ◽  
Author(s):  
Ines Höschel ◽  
Dörthe Handorf ◽  
Christoph Jacobi ◽  
Johannes Quaas

<p>The loss of Arctic sea ice as a consequence of global warming is changing the forcing of the atmospheric large-scale circulation.  Areas not covered with sea ice anymore may act as an additional heat source.  Associated changes in Rossby wave propagation can initiate tropospheric and stratospheric pathways of Arctic - Mid-latitude linkages.  These pathways have the potential to impact on the large-scale energy transport into the Arctic.  On the other hand, studies show that the large-scale circulation contributes to Arctic warming by poleward transport of moist static energy. This presentation shows results from research within the Transregional Collaborative Research Center “ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3” funded by the Deutsche Forschungsgemeinschaft.  Using the ERA interim and ERA5 reanalyses the meridional moist static energy transport during high ice and low ice periods is compared.  The investigation discriminates between contributions from planetary and synoptic scale.  Special emphasis is put on the seasonality of the modulations of the large-scale energy transport.</p>


2020 ◽  
pp. 105368
Author(s):  
Zakieh Alizadeh ◽  
Ali R. Mohebalhojeh ◽  
Farhang Ahmadi-Givi ◽  
Mohammad Mirzaei ◽  
Sakineh Khansalari

2020 ◽  
Vol 33 (9) ◽  
pp. 3619-3633 ◽  
Author(s):  
Tingting Gong ◽  
Steven B. Feldstein ◽  
Sukyoung Lee

AbstractThe relationship between latent heating over the Greenland, Barents, and Kara Seas (GBKS hereafter) and Rossby wave propagation between the Arctic and midlatitudes is investigated using global reanalysis data. Latent heating is the focus because it is the most likely source of Rossby wave activity over the Arctic Ocean. Given that the Rossby wave time scale is on the order of several days, the analysis is carried out using a daily latent heating index that resembles the interdecadal latent heating trend during the winter season. The results from regression calculations find a trans-Arctic Rossby wave train that propagates from the subtropics, through the midlatitudes, into the Arctic, and then back into midlatitudes over a period of about 10 days. Upon entering the GBKS, this wave train transports moisture into the region, resulting in anomalous latent heat release. At high latitudes, the overlapping of a negative latent heating anomaly with an anomalous high is consistent with anomalous latent heat release fueling the Rossby wave train before it propagates back into the midlatitudes. This implies that the Rossby wave propagation from the Arctic into the midlatitudes arises from trans-Arctic wave propagation rather than from in situ generation. The method used indicates the variance of the trans-Arctic wave train, but not in situ generation, and implies that the variance of the former is greater than that of latter. Furthermore, GBKS sea ice concentration regression against the latent heating index shows the largest negative value six days afterward, indicating that sea ice loss contributes little to the latent heating.


2020 ◽  
Vol 50 (1) ◽  
pp. 239-253
Author(s):  
K. H. Brink ◽  
J. Pedlosky

AbstractThis contribution seeks to understand the vertical structure of linearized quasigeostrophic baroclinic modes when they are modified by the presence of a baroclinic mean flow and associated potential vorticity gradients. It is found that even modest, O(0.05 m s−1), mean flows can give rise to very substantial changes in modal structures, often in the sense of increased surface intensification. The extent to which stable modes are modified depends strongly on the direction of Rossby wave propagation. Further, baroclinically unstable solutions can appear, and a meaningful inviscid critical-layer solution can occur at the transition to instability when the horizontal gradient of potential vorticity changes sign at some depth within the water column. In addition, the gravest, n = 0, vertical stable mode is no longer strictly barotropic, but rather it can carry density variability at frequencies much higher than those possible for baroclinic (higher) Rossby wave modes. This finding appears to be consistent with oceanic current-meter observations that suggest temperature variability propagation even when the frequency is too high for traditional baroclinic Rossby waves to exist.


2019 ◽  
Vol 32 (18) ◽  
pp. 6117-6135 ◽  
Author(s):  
Yanjie Li ◽  
Jin Feng ◽  
Jianping Li ◽  
Aixue Hu

Abstract Rossby waves can cross the equator and connect the Northern Hemisphere (NH) and Southern Hemisphere (SH), or be blocked in the vicinity of the equator. This work explores the windows and barriers for the cross-equatorial waves (CEWs) by the wave ray ensemble method. The eastern Pacific and Atlantic regions are identified as common windows in both boreal winter and summer, while the Africa–Indian Ocean section exists as a window only in boreal summer. The western–central Pacific is found to be a barrier section. These results are consistent with correlation analysis of reanalysis data. Moreover, the dependence on the wavenumber of CEWs is investigated, revealing that they are restricted to long waves with zonal wavenumbers less than 6 and that their wavenumber vectors exhibit a northwest–southeast (southwest–northeast) tilt when they cross the equator from the NH to SH (from the SH to NH). This long-wave dominance of CEWs results from the spectral-selective filtering mechanism, which suggests that long waves have narrower equatorial barriers than short waves. Finally, the main wave duct associated with each window is obtained by the global passing CEW density distribution. The results indicate that the main CEW ducts roughly follow a great circle–like pathway, except for the Africa–Indian Ocean window in boreal summer, which may be modulated by the cross-equatorial monsoonal flow.


Sign in / Sign up

Export Citation Format

Share Document