electrosteric stabilization
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 1)

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 831
Author(s):  
Seungjun Lee ◽  
Jaehoo Lee ◽  
Nongmoon Hwang

The stable Y5O4F7 suspension for dense yttrium oxyfluoride (YOF) coating by suspension plasma spraying (SPS) was developed. Electrostatically and electrosterically stabilized aqueous Y5O4F7 suspensions were prepared and compared with a commercially available Y5O4F7 suspension without dispersant. The wettability and dispersibility of the Y5O4F7 suspensions were evaluated in terms of the zeta potential, average particle size, and size distribution with electrophoretic light scattering (ELS) and dynamic light scattering (DLS). The viscosity was measured and the sedimentation was tested to examine the fluidity and stability of the Y5O4F7 suspensions. When electrostatic (BYK-154) and electrosteric (BYK-199) dispersants were added to the Y5O4F7 suspension, the isoelectric point (IEP) of Y5O4F7 particles in the suspension shifted to lower pH. The zeta potential of both of electrostatically and electrosterically stabilized Y5O4F7 suspensions were higher than ±40 mV at pH of 8.6, respectively, which were much higher than of the Y5O4F7 suspension without dispersant. Meanwhile, the average particle size of the electrosterically stabilized Y5O4F7 suspension was much smaller than that of the electrostatically stabilized one. The electrosteric stabilization had a great effect on improving the wettability and dispersibility of the Y5O4F7 suspension. The coating rate of the electrosterically stabilized Y5O4F7 suspension was the highest among the three tested suspensions. In addition, the YOF coating deposited with the electrosterically stabilized Y5O4F7 suspension had the highest hardness and the lowest porosity.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1195
Author(s):  
Elena Piacenza ◽  
Alessandro Presentato ◽  
Francesco Ferrante ◽  
Giuseppe Cavallaro ◽  
Rosa Alduina ◽  
...  

Among the plethora of available metal(loid) nanomaterials (NMs), those containing selenium are interesting from an applicative perspective, due to their high biocompatibility. Microorganisms capable of coping with toxic Se-oxyanions generate mostly Se nanoparticles (SeNPs), representing an ideal and green alternative over the chemogenic synthesis to obtain thermodynamically stable NMs. However, their structural characterization, in terms of biomolecules and interactions stabilizing the biogenic colloidal solution, is still a black hole that impairs the exploitation of biogenic SeNP full potential. Here, spherical and thermodynamically stable SeNPs were produced by a metal(loid) tolerant Micrococcus sp. Structural characterization obtained by Scanning Electron Microscopy (SEM) revealed that these SeNPs were surrounded by an organic material that contributed the most to their electrosteric stabilization, as indicated by Zeta (ζ) potential measurements. Proteins were strongly adsorbed on the SeNP surface, while lipids, polysaccharides, and nucleic acids more loosely interacted with SeNMs as highlighted by Fourier Transform Infrared Spectroscopy (FTIR) and overall supported by multivariate statistical analysis. Nevertheless, all these contributors were fundamental to maintain SeNPs stable, as, upon washing, the NM-containing extract showed the arising of aggregated SeNPs alongside Se nanorods (SeNRs). Besides, Density Functional Theory (DFT) calculation unveiled how thiol-containing molecules appeared to play a role in SeO32− bioreduction, stress oxidative response, and SeNP stabilization.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2532 ◽  
Author(s):  
Elena Piacenza ◽  
Alessandro Presentato ◽  
Marta Bardelli ◽  
Silvia Lampis ◽  
Giovanni Vallini ◽  
...  

We explored how Ochrobactrum sp. MPV1 can convert up to 2.5 mM selenite within 120 h, surviving the challenge posed by high oxyanion concentrations. The data show that thiol-based biotic chemical reaction(s) occur upon bacterial exposure to low selenite concentrations, whereas enzymatic systems account for oxyanion removal when 2 mM oxyanion is exceeded. The selenite bioprocessing produces selenium nanomaterials, whose size and morphology depend on the bacterial physiology. Selenium nanoparticles were always produced by MPV1 cells, featuring an average diameter ranging between 90 and 140 nm, which we conclude constitutes the thermodynamic stability range for these nanostructures. Alternatively, selenium nanorods were observed for bacterial cells exposed to high selenite concentration or under controlled metabolism. Biogenic nanomaterials were enclosed by an organic material in part composed of amphiphilic biomolecules, which could form nanosized structures independently. Bacterial physiology influences the surface charge characterizing the organic material, suggesting its diverse biomolecular composition and its involvement in the tuning of the nanomaterial morphology. Finally, the organic material is in thermodynamic equilibrium with nanomaterials and responsible for their electrosteric stabilization, as changes in the temperature slightly influence the stability of biogenic compared to chemogenic nanomaterials.


Nanoscale ◽  
2017 ◽  
Vol 9 (48) ◽  
pp. 19255-19262 ◽  
Author(s):  
J. Song ◽  
Y. N. Tan ◽  
D. Jańczewski ◽  
M. A. Hempenius ◽  
J. W. Xu ◽  
...  

Synthesis of stable and redox responsive AuNPs using organometallic polyelectrolytes for the detection of redox molecules, e.g. vitamin C, in a controlled and facile manner.


2016 ◽  
Author(s):  
Stanislaw Slomkowski ◽  
José V. Alemán ◽  
Robert G. Gilbert ◽  
Michael Hess ◽  
Kazuyuki Horie ◽  
...  

Langmuir ◽  
2012 ◽  
Vol 28 (42) ◽  
pp. 14878-14891 ◽  
Author(s):  
Swee Pin Yeap ◽  
Abdul Latif Ahmad ◽  
Boon Seng Ooi ◽  
JitKang Lim

Sign in / Sign up

Export Citation Format

Share Document