persian gulf water
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 8)

H-INDEX

10
(FIVE YEARS 1)

Oceans ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 105-125
Author(s):  
Adam Ayouche ◽  
Charly De Marez ◽  
Mathieu Morvan ◽  
Pierre L’Hegaret ◽  
Xavier Carton ◽  
...  

The Ras al Hadd oceanic dipole is a recurrent association of a cyclone (to the northeast) and of an anticyclone (to the southwest), which forms in summer and breaks up at the end of autumn. It lies near the Ras al Hadd cape, southeast of the Arabian peninsula. Its size is on the order of 100 km. Along the axis of this dipole flows an intense jet, the Ras al Had jet. Using altimetric data and an eddy detection and tracking algorithm (AMEDA: Angular Momentum Eddy Detection and tracking Algorithm), we describe the life cycle of this oceanic dipole over a year (2014–2015). We also use the results of a numerical model (HYCOM, the HYbrid Coordinate Ocean Model) simulation, and hydrological data from ARGO profilers, to characterize the vertical structure of the two eddies composing the dipole, and their variability over a 15 year period. We show that (1) before the dipole is formed, the two eddies that will compose it, come from different locations to join near Ras al Hadd, (2) the dipole remains near Ras al Hadd during summer and fall while the wind stress (due to the summer monsoon wind) intensifies the cyclone, (3) both the anticyclone and the cyclone reach the depth of the Persian Gulf Water outflow, and (4) their horizontal radial velocity profile is often close to Gaussian but it can vary as the dipole interacts with neighboring eddies. As a conclusion, further work with a process model is recommended to quantify the interaction of this dipole with surrounding eddies and with the atmosphere.


2020 ◽  
Vol 47 (14) ◽  
Author(s):  
Peter M. F. Sheehan ◽  
Benjamin G. M. Webber ◽  
Alejandra Sanchez‐Franks ◽  
Adrian J. Matthews ◽  
Karen J. Heywood ◽  
...  

2020 ◽  
Author(s):  
Bastien Queste

<p>The physical dynamics of the Sea of Oman are well resolved on meso- and basin-scales. The most prominent features are the slope current of the Persian Gulf Water (PGW), an energetic field of persistent eddies and circulation driven by seasonal monsoon wind regimes. Past work has shown that both oxygenation of the deep oxygen minimum zone and stimulation of local surface primary production are driven by submesoscale processes. In contrast to the pronounced summer-monsoon upwelling in the Arabian Sea, upwelling at the northern Omani shelf appears in the form of short irregular events. The main drivers for local upwelling and the exchange of water and its properties across the shelf break are not fully resolved. In particular, the relative importance of the two dominant causes of upwelling (ekman dynamics and eddy/topography interactions) and their interactions with the PGW slope-current are not known. Cross-shelf coupling is strongly determined by processes on the sub-mesoscale with weak surface signatures preventing analysis through remote sensing. The high system complexity and the lack of adequate observations explain past difficulties in resolving cross-shelf transport and local upwelling responsible for increased primary productivity and OMZ oxygenation.</p><p>Here we present new results identifying the submesoscale processes which control productivity and oxygenation in the region at a scale not previously described. These observations build on past work and illustrate how autonomous underwater vehicles can bring forward a full system understanding from basin-wide circulation and description of large ocean currents to submesoscale processes responsible for controlling biogeochemical cycling from a single campaign using standard ocean sensors and utilising the vehicles' inherent ability to measure upwelling and currents. We hope to illustrate the multidisciplinarity and flexibility of autonomous platforms in situations where vessels may not easily survey.</p>


Ocean Science ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. 1531-1543 ◽  
Author(s):  
Mathieu Morvan ◽  
Pierre L'Hégaret ◽  
Xavier Carton ◽  
Jonathan Gula ◽  
Clément Vic ◽  
...  

Abstract. Persian Gulf Water and Red Sea Water are salty and dense waters flowing at intermediate depths in the Gulf of Oman and the Gulf of Aden, respectively. Their spreading pathways are influence by mesoscale eddies that dominate the surface flow in both semi-enclosed basins. In situ measurements combined with altimetry indicate that Persian Gulf Water is stirred in the form of filaments and submesoscale structures by mesoscale eddies. In this paper, we study the formation and the life cycle of intense submesoscale vortices and their potential impact on the spreading of Persian Gulf Water and Red Sea Water. We use a primitive-equation three-dimensional hydrostatic model at a submesoscale-resolving resolution to study the evolution of submesoscale vortices. Our configuration idealistically mimics the dynamics in the Gulf of Oman and the Gulf of Aden: a zonal row of mesoscale vortices interacting with north and south topographic slopes. Intense submesoscale vortices are generated in the simulations along the continental slopes due to two different mechanisms. First, intense vorticity filaments are generated over the continental slope due to frictional interactions of the background flow with the sloping topography. These filaments are shed into the ocean interior and undergo horizontal shear instability that leads to the formation of submesoscale coherent vortices. The second mechanism is inviscid and features baroclinic instabilities arising at depth due to the weak stratification. Submesoscale vortices subsequently drift away, merge and form larger vortices. They can also pair with opposite-signed vortices and travel across the domain. They eventually dissipate their energy via several mechanisms, in particular fusion into the larger eddies or erosion on the topography. Since no submesoscale flow clearly associated with the fragments of Persian Gulf Water was observed in situ, we modeled Persian Gulf Water as Lagrangian particles. Particle patches are advected and sheared by vortices and are entrained into filaments. Their size first grows as the square root of time: a signature of the merging processes. Then, it increases linearly with time, corresponding to their ballistic advection by submesoscale eddies. On the contrary, without intense submesoscale eddies, particles are mainly advected by mesoscale eddies; this implies a weaker dispersion of particles than in the previous case. This shows the potentially important role of submesoscale eddies in spreading Persian Gulf Water and Red Sea Water.


2019 ◽  
Author(s):  
Henrike Schmidt ◽  
Rena Czeschel ◽  
Martin Visbeck

Abstract. Oxygen minimum zones (OMZs) in the open ocean occur below the surface in regions of weak ventilation and high biological productivity. Very low levels of dissolved oxygen affect marine life and alter biogeochemical cycles. One of the most intense but least understood OMZs in the world is located in the Arabian Sea in a depth range between 300 to 1000 m. Within the last decades observations suggest a decreasing oxygen trend. Thus, an improved understanding of the crucial processes is necessary for a reliable assessment of the future development of the Arabian Sea OMZ. This study uses a combination of observational data as well as reanalysis velocity fields from the ocean model Hycom (Hybrid Coordinate Ocean Model) to explore the ventilation dynamics of the Arabian Sea OMZ. Our results show that the OMZ features a strong seasonal cycle with regional differences that is correlated with the monsoon system: In the eastern basin, the OMZ is strongest during the winter monsoon with a core thickness of 1000 m depth and oxygen values of less than 5 µmol/kg. Ventilation during that phase is dominated by Persian Gulf water, that clockwise circles the perimeter of the basin and enters the OMZ from the north. During the summer monsoon ventilation from the southeast leads to higher oxygen values indicating a reverse flow along the Indian coast in the intermediate layer compared to the southeastward surface currents. The seasonal cycle in the western basin has the same seasonality as the one in the eastern basin with a core thickness of 900 m during the winter monsoon. The oxygen supply during the summer monsoon is weaker compared to the eastern basin and correlates with the ventilation of Persian Gulf (Red Sea) water during the summer monsoon (autumn inter-monsoon) phase. As the interior exchange between the eastern and western basin is weak, the more pronounced OMZ in the eastern basin is explained by prolonged ventilation time scales. For the eastern (western) basin Persian Gulf water needs 2–3 (1–2) years and Red Sea water 7–8 (3–4) years to ventilate the OMZ.


2019 ◽  
Author(s):  
Mathieu Morvan ◽  
Pierre L'Hégaret ◽  
Xavier Carton ◽  
Jonathan Gula ◽  
Clément Vic ◽  
...  

Abstract. The Persian Gulf Water and Red Sea Water are salty and dense waters recirculating at subsurface in the Gulf of Oman and the Gulf of Aden respectively, under the influence of mesoscale eddies which dominate the surface flow in both semi-enclosed basins. In situ measurements combined with altimetry indicate that the Persian Gulf Water is driven by mesoscale eddies in the form of filaments and submesoscale structures. In this paper, we study the formation and the life cycle of intense submesoscale vortices and their impact on the spread of Persian Gulf Water and Red Sea Water. We use a three-dimensional hydrostatic model with submesoscale-resolving resolution to study the evolution of submesoscale vortices. Our configuration is an idealized version of the Gulf of Oman and Aden: a zonal row of mesoscale vortices interacting with north and south topographic slopes. Intense submesoscale vortices are generated in the simulations along the continental slopes due to two different mechanisms. The first mechanism is due to frictional generation of vorticity in the bottom boundary layer, which detaches from the topography, forms an unstable vorticity filament, and undergoes horizontal shear instability that leads to the formation of submesoscale coherent vortices. The second mechanism is inviscid and implies arrested topographic Rossby waves breaking and forming submesoscale coherent vortices where a mesoscale anticyclone interacts with the topographic slope. Submesoscale vortices subsequently drift away, merge and form larger vortices. They can also pair with opposite signed vortices and travel across the domain. They can weaken or disappear via several mechanisms, in particular fusion into the larger eddies or erosion on the topography. Particle patches are advected and sheared by vortices and are entrained into filaments. Their size first grows as the square root of time, a signature of the merging processes, then it increases linearly with time, corresponding to their ballistic advection by submesoscale eddies. On the contrary, witout intense submesoscale eddies, particles are mainly advected by mesoscale eddies; this implies a weaker dispersion of particles than in the previous case. This shows the important role of submesoscale eddies in spreading Persian Gulf Water and Red Sea Water.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1550 ◽  
Author(s):  
Mojtaba Heydarizad ◽  
Ezzat Raeisi ◽  
Rogert Sori ◽  
Luis Gimeno ◽  
Raquel Nieto

Iran faces climate disparities due to extreme topographic anomalies, the Caspian Sea and the Persian Gulf water bodies, influences from diverse air masses and moisture sources, and its considerable area. FLEXPART model has been utilized to determine the main marine and continental moisture sources for south-central (Shiraz box) and northeastern (Mashhad box) parts of Iran. The marine moisture sources directly influenced extreme drought and wet conditions in Shiraz and Mashhad boxes during the wet period, while no correlation was observed during the dry period. In addition to local components, extreme drought and wet conditions have also been influenced by the climatic teleconnections. Extreme drought conditions mainly occurred during the La Niña phase, while wet conditions mainly occurred during the El Niño phase. Scrutinizing the effect of marine moisture sources on the hydrology of water resources demonstrated that the moisture contribution from the Arabian Sea directly influenced the discharges of Chenar-rahdar (in the Shiraz box) and Kardeh (in the Mashhad box) rivers during the wet period. However, the Red Sea inversely correlated with the discharges of both rivers during the dry period. Hydrogeologists, hydrologists, and meteorologists can utilize the outputs of this survey to develop climatology and hydrology models in the future.


2016 ◽  
Vol 48 (9-10) ◽  
pp. 3207-3226 ◽  
Author(s):  
Vineet Jain ◽  
D. Shankar ◽  
P. N. Vinayachandran ◽  
A. Kankonkar ◽  
Abhisek Chatterjee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document