diffusive approximation
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
E. Blanco ◽  
K. Kutak ◽  
W. Płaczek ◽  
M. Rohrmoser ◽  
R. Straka

Abstract We study evolution equations describing jet propagation through quark-gluon plasma (QGP). In particular we investigate the contribution of momentum transfer during branching and find that such a contribution is sizeable. Furthermore, we study various approximations, such as the Gaussian approximation and the diffusive approximation to the jet-broadening term. We notice that in order to reproduce the BDIM equation (without the momentum transfer in the branching) the diffusive approximation requires a very large value of the jet-quenching parameter $$ \hat{q} $$ q ̂ .


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Pierre Roux ◽  
Delphine Salort

<p style='text-indent:20px;'>The Nonlinear Noisy Leaky Integrate and Fire (NNLIF) model is widely used to describe the dynamics of neural networks after a diffusive approximation of the mean-field limit of a stochastic differential equation. In previous works, many qualitative results were obtained: global existence in the inhibitory case, finite-time blow-up in the excitatory case, convergence towards stationary states in the weak connectivity regime. In this article, we refine some of these results in order to foster the understanding of the model. We prove with deterministic tools that blow-up is systematic in highly connected excitatory networks. Then, we show that a relatively weak control on the firing rate suffices to obtain global-in-time existence of classical solutions.</p>


Author(s):  
Andrey Yu. Ambos ◽  
Galiya Lotova ◽  
Guennady Mikhailov

AbstractA Monte Carlo algorithm admitting parallelization is constructed for estimation of probability moments of the spectral radius of the operator of the integral equation describing transfer of particles with multiplication in a random medium. A randomized homogenization method is developed with the same aim on the base of the theory of small perturbations and diffusive approximation. Test calculations performed for a one-group spherically symmetric model system have shown a satisfactory concordance of results obtained from two models.


2015 ◽  
Vol 81 ◽  
pp. 84-94 ◽  
Author(s):  
Cristiana Di Cristo ◽  
Michele Iervolino ◽  
Andrea Vacca

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Igor V. Malyk

Weak convergence of semi-Markov processes in the diffusive approximation scheme is studied in the paper. This problem is not new and it is studied in many papers, using convergence of random processes. Unlike other studies, we used in this paper concept of the compensating operator. It enables getting sufficient conditions of weak convergence under the conditions on the local characteristics of output semi-Markov process.


Sign in / Sign up

Export Citation Format

Share Document