pluripotent marker
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Masashi Hada ◽  
Hisashi Miura ◽  
Akie Tanigawa ◽  
Shogo Matoba ◽  
Kimiko Inoue ◽  
...  

The placenta is a highly evolved, specialized organ in mammals. It differs from other organs in that it functions only for fetal maintenance during gestation. Therefore, there must be intrinsic mechanisms that guarantee its unique functions. To address this question, we comprehensively analyzed epigenomic features of mouse trophoblast stem cells (TSCs). Our genome-wide, high-throughput analyses revealed that the TSC genome contains large-scale (>1-Mb) rigid heterochromatin architectures with a high degree of histone H3.1/3.2–H3K9me3 accumulation, which we termed TSC-defined highly heterochromatinized domains (THDs). Importantly, depletion of THDs by knockdown of CAF1, an H3.1/3.2 chaperone, resulted in down-regulation of TSC markers, such as Cdx2 and Elf5, and up-regulation of the pluripotent marker Oct3/4, indicating that THDs maintain the trophoblastic nature of TSCs. Furthermore, our nuclear transfer technique revealed that THDs are highly resistant to genomic reprogramming. However, when H3K9me3 was removed, the TSC genome was fully reprogrammed, giving rise to the first TSC cloned offspring. Interestingly, THD-like domains are also present in mouse and human placental cells in vivo, but not in other cell types. Thus, THDs are genomic architectures uniquely developed in placental lineage cells, which serve to protect them from fate reprogramming to stably maintain placental function.


2021 ◽  
Vol 22 (16) ◽  
pp. 8976
Author(s):  
Mengyi Wei ◽  
Jindun Zhang ◽  
Jia Liu ◽  
Chaoyue Zhao ◽  
Shuo Cao ◽  
...  

Parthenogenetic embryos have been widely studied as an effective tool related to paternal and maternal imprinting genes and reproductive problems for a long time. In this study, we established a parthenogenetic epiblast-like stem cell line through culturing parthenogenetic diploid blastocysts in a chemically defined medium containing activin A and bFGF named paAFSCs. The paAFSCs expressed pluripotent marker genes and germ-layer-related genes, as well as being alkaline-phosphatase-positive, which is similar to epiblast stem cells (EpiSCs). We previously showed that advanced embryonic stem cells (ASCs) represent hypermethylated naive pluripotent embryonic stem cells (ESCs). Here, we converted paAFSCs to ASCs by replacing bFGF with bone morphogenetic protein 4 (BMP4), CHIR99021, and leukemia inhibitory factor (LIF) in a culture medium, and we obtained parthenogenetic advanced stem cells (paASCs). The paASCs showed similar morphology with ESCs and also displayed a stronger developmental potential than paAFSCs in vivo by producing chimaeras. Our study demonstrates that maternal genes could support parthenogenetic EpiSCs derived from blastocysts and also have the potential to convert primed state paAFSCs to naive state paASCs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Guo ◽  
Huan Zhu ◽  
Xiangchen Li ◽  
Caiyun Ma ◽  
Tingting Sun ◽  
...  

AbstractPrevious reports have demonstrated that Reversine can reverse differentiation of lineage-committed cells to mesenchymal stem cells and suppress tumors growth. However, the molecular mechanisms of antitumor activity and promoting cellular dedifferentiation for reversine have not yet been clearly elucidated. In the present study, it was demonstrated that reversine of 5 μM could induce multinucleated cells through cytokinesis failure rather than just arrested in G2 or M phase. Moreover, reversine reversed the differentiation of sheep fibroblasts into MSC-like style, and notably increased the expression of pluripotent marker genes Oct4 and MSCs-related surface antigens. The fibroblasts treated with reversine could transdifferentiate into all three germ layers cells in vitro. Most importantly, the induced β-like cells and hepatocytes had similar metabolic functions with normal cells in vivo. In addition, reversine promoted fibroblasts autophagy, ROS accumulation, mitochondrial dysfunction and cell apoptosis via the mitochondria mediated intrinsic pathway. The results of high-throughput RNA sequencing showed that most differentially expressed genes (DEGs) involved in Mismatch repair, Nucleotide excision repair and Base excision repair were significantly up-regulated in reversine treated fibroblasts, which means that high concentration of reversine will cause DNA damage and activate the DNA repair mechanism. In summary, reversine can increase the plasticity of sheep fibroblasts and suppress cell growth via the mitochondria mediated intrinsic pathway.


2020 ◽  
Vol 33 (11) ◽  
pp. 1837-1847
Author(s):  
Imran Ullah ◽  
Ran Lee ◽  
Keon Bong Oh ◽  
Seongsoo Hwang ◽  
Youngim Kim ◽  
...  

Objective: To evaluate the pancreatic differentiation potential of α-1,3-galactosyltransferase knockout (GalTKO) pig-derived bone marrow-derived mesenchymal stem cells (BM-MSCs) using epigenetic modifiers with different pancreatic induction media.Methods: The BM-MSCs have been differentiated into pancreatic β-like cells by inducing the overexpression of key transcription regulatory factors or by exposure to specific soluble inducers/small molecules. In this study, we evaluated the pancreatic differentiation of GalTKO pig-derived BM-MSCs using epigenetic modifiers, 5-azacytidine (5-Aza) and valproic acid (VPA), and two types of pancreatic induction media – advanced Dulbecco's modified Eagle's medium (ADMEM)-based and N2B27-based media. GalTKO BM-MSCs were treated with pancreatic induction media and the expression of pancreas-islets-specific markers was evaluated by real-time quantitative polymerase chain reaction, Western blotting, and immunofluorescence. Morphological changes and changes in the 5'-C-phosphate-G-3' (CpG) island methylation patterns were also evaluated.Results: The expression of the pluripotent marker (POU class 5 homeobox 1 [OCT4]) was upregulated upon exposure to 5-Aza and/or VPA. GalTKO BM-MSCs showed increased expression of neurogenic differentiation 1 in the ADMEM-based (5-Aza) media, while the expression of NK6 homeobox 1 was elevated in cells induced with the N2B27-based (5-Aza) media. Moreover, the morphological transition and formation of islets-like cellular clusters were also prominent in the cells induced with the N2B27-based media with 5-Aza. The higher insulin expression revealed the augmented trans-differentiation ability of GalTKO BM-MSCs into pancreatic β-like cells in the N2B27-based media than in the ADMEM-based media.Conclusion: 5-Aza treated GalTKO BM-MSCs showed an enhanced demethylation pattern in the second CpG island of the OCT4 promoter region compared to that in the GalTKO BM-MSCs. The exposure of GalTKO pig-derived BM-MSCs to the N2B27-based microenvironment can significantly enhance their trans-differentiation ability into pancreatic β-like cells.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ling Wang ◽  
Yue Su ◽  
Chang Huang ◽  
Yexuan Yin ◽  
Jiaqi Zhu ◽  
...  

Abstract FOXH1 is a primitive-streak specifier and ACTIVIN co-effector that plays an important role in development, and positively regulates the generation of human induced pluripotent stem cells (iPSCs) from somatic cells by OCT4, SOX2, KLF4, and MYC (OSKM) transduction. However, the mechanism and upstream regulation for FOXH1 expression in reprogramming are unclear. We found FOXH1 expression plays a significant role to enhance epithelial marker and suppress mesenchymal gene expression in OSKM-mediated human cell reprogramming. Furthermore, NANOG and LIN28 (NL) co-stimulate FOXH1 expression, which correlates with the enhanced reprogramming efficiency by NL-factors. FOXH1 expression is also stimulated by a specific inhibitor for H3K79 methyltransferase DOT1L (iDOT1L) but not by inhibition of the canonical WNT signaling. We further show that blocking endogenous FOXH1 expression eliminates the enhanced reprogramming effect by NL and iDOT1L. However, overexpressing FOXH1 in NL plus iDOT1L condition results in significantly reduced TRA-1-60 positively expressed cells and decreases pluripotent marker expression in reprogramming. Our study elucidated an essential role for properly stimulated FOXH1 expression by NANOG, LIN28, and H3K79 demethylation for dramatic enhancement of reprograming.


2018 ◽  
Vol 53 (5) ◽  
pp. 1191-1199
Author(s):  
Xiusheng Zhu ◽  
Lanyu Li ◽  
Bangjun Gao ◽  
Dandan Zhang ◽  
Yanyan Ren ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Linda Cassidy ◽  
Meerim Choi ◽  
Jason Meyer ◽  
Rui Chang ◽  
Gail M. Seigel

Pluripotent stem cell markers can be useful for diagnostic evaluation of human tumors. The novel pluripotent marker stage-specific embryonic antigen-5 (SSEA-5) is expressed in undifferentiated human induced pluripotent cells (iPSCs), but little is known about SSEA-5 expression in other primitive tissues (e.g., human tumors). We evaluated SSEA-5 immunoreactivity patterns in human tumors, cell lines, teratomas, and iPS cells together with another pluripotent cell surface marker L1 cell adhesion molecule (L1CAM). We tested two hypotheses: (1) SSEA-5 and L1CAM would be immunoreactive and colocalized in human tumors; (2) SSEA-5 and L1CAM immunoreactivity would persist in iPSCs following retinal differentiating treatment. SSEA-5 immunofluorescence was most pronounced in primitive tumors, such as embryonal carcinoma. In tumor cell lines, SSEA-5 was highly immunoreactive in Capan-1 cells, while L1CAM was highly immunoreactive in U87MG cells. SSEA-5 and L1CAM showed colocalization in undifferentiated iPSCs, with immunopositive iPSCs remaining after 20 days of retinal differentiating treatment. This is the first demonstration of SSEA-5 immunoreactivity in human tumors and the first indication of SSEA-5 and L1CAM colocalization. SSEA-5 and L1CAM warrant further investigation as potentially useful tumor markers for histological evaluation or as markers to monitor the presence of undifferentiated cells in iPSC populations prior to therapeutic use.


Sign in / Sign up

Export Citation Format

Share Document