Abstract
To assess the state of plants and their response to changes in soil properties, the elemental composition of leaves of widespread and pollution-tolerant species Betula pubescens Ehrh. and Salix caprea L. has been studied near the nonferrous metallurgy enterprises in the Kola Peninsula. The content of nutrients and heavy metals in the leaves of undergrowth on technogenic barrens and remediation sites differing in remediation technologies has been analyzed. According to the results of leaf diagnostics, both species under barren conditions are characterized by a noticeable deficiency of K, Ca, P, and, especially, Mn and Zn. The leaves of both species accumulate Ni, Cu, Co, As, Cr, Fe, Al, Pb, V, and S. Willow leaves contain more Cd, Co, Cr, Ni, Cu, Al, Fe, As, S, Ca, K and less Mn than birch leaves. Chemophytostabilization has little effect, and the covering of contaminated soils with a constructed fertile layer leads to the enrichment of birch and willow leaves with Ca, K, and P. Under conditions of continuing atmospheric emissions and gradual accumulation of bioavailable heavy metals in soils after the remediation, the accumulation of metals in leaves is largely determined by the distance from the pollution source, reflecting the possibility of both root and foliar uptake. The concentrations of Ni and Cu in leaves in 2018 did not decrease compared to 2011. The low, albeit varying, ratios of the contents of heavy metals in undergrowth leaves and in the soil and weak correlation of heavy metal contents in these media indicated that B. pubescens and S. caprea retain their ability to regulate their chemical composition even under extreme conditions of technogenic barrens. At the same time, supporting the protective capabilities of plants via optimizing mineral nutrition and soil acidity in combination with a reduction in atmospheric pollution is a prerequisite for efficient remediation of technogenic territories in the Far North.