westerly flow
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 15)

H-INDEX

19
(FIVE YEARS 2)

MAUSAM ◽  
2022 ◽  
Vol 46 (3) ◽  
pp. 235-244
Author(s):  
P. S. JOSAN

In this paper a diagnostic study is carried Out to the source and sink terms for the formation and acceleration/deceleration of low level westerly Jet during monsoon onset. For this purpose momentum budget technique is used. The budget equation is derived in the (x.y.p.t) system. The area is confined to a small box the boundaries over the central Arabian Sea the westerly flow prominent during the onset of monsoon. Each tem in the budget equation is calculated separately. FGG E III b. 1200 UTC data set is used for the analysis. The Coriolis force term is found to be sink term rather than a source tern Tram. Transient north-south term is prominent source terms when time averaged momentum budget is considered. When the time averaged momentum budget for each pressure slab is considered. it is concluded that, north-south force terms are prominent source terms of momentum for all slabs and large .cumulus type convection may contribute  to frictional dissipation of momentum for the upper pressure slabs. Frictional force is the main sink term when one examines the momentum budget for each day and the source term are varying day-by-day. On the average, the jet is accelerated during the period. It is also found that the net momentum tendency is small and oscillatory in nature. it is also found that at Minicoy. rainfall is inversely related to momentum  tendency and whenever westerly jet is strong (weak) the rainfall is less (more). Distribution of U-momentum is also found to be oscillatory ill nature.    


MAUSAM ◽  
2021 ◽  
Vol 49 (3) ◽  
pp. 285-300
Author(s):  
N. C. BISWAS ◽  
U. S. DE ◽  
D. R. SIKKA

The advance of monsoon over the Indian sub-continent is not a continuous process. It advances in a phased manner. It has been observed from large sample of the data that the monsoon current often stagnates outside northwest India. Gujarat, northwest Madhya Pradesh and west Uttar Pradesh for a long period resulting in delaying its advance considerably over these areas. The cause of such prolonged stagnation can be identified to the mechanic Himalayas - Tibetan plateau on the mid-tropospheric westerly flow in absence of any synoptic scale forcing over north India. During 1976, 1982 and 1991 there was prolonged stagnation of southwest monsoon over northwest India and neighbouring areas and, in 1985, it was over north Konkan during June-July. In those years, the sub-tropical ridge (STR) in the middle troposphere over India was weak or absent during the initial phase of advance of monsoon. In absence of the STR, the westerly trough activity in the mid-tropospheric levels extended to southern latitude disrupting the monsoon flow and bringing prolonged stagnation. The observation was confirmed on a test study conducted during the prolonged stagnation of the monsoon of 1995. On the other hand, in the year 1990, the mid- tropospheric STR became prominent from middle of June over north India and it helped in restricting southward extension of westerly troughs. Consequently the equatorial trough remained organize gradually over north India and caused the gradual advance of SW monsoon over the entire country without considerable.


2021 ◽  
Author(s):  
◽  
Ignacio Alonso Jara Parra

<p>Climate variability in New Zealand (34-47°S), a long, narrow continental strip straddling the mid-latitudes of the Southern Hemisphere, results largely from the interplay between sub-tropical and sub-Antarctic atmospheric and oceanic circulation systems. Despite their importance to present-day New Zealand climate, these hemispheric-wide systems have only recently come under the spotlight of paleo-climate investigations with most attention having traditionally been centred on reconstructing climate trends. This PhD adopts a broader approach to climate reconstruction, by developing and comparing two new pollen-climate reconstructions from New Zealand (38-42°S) and one from Patagonia, Southern Chile (43°S). At each site, paleo-climate interpretations are based on the changes in climate-sensitive plant indicators. The influence of hemispheric atmospheric circulation on New Zealand climate history is assessed by: (1) comparing New Zealand climate/vegetation trends with published proxies from low- and high-latitudes, and (2) comparing New Zealand reconstructions with the Patagonian record. Finally, a multi-millennial pattern of Southern Hemisphere circulation over the last 14,000 cal yr BP (calendar years before AD 1950) is outlined. The first record presented is a 16,000-year temperature reconstruction from a small alpine lake in South Island, New Zealand (41°S), based on pollen and plant macrofossils. Climate variations are interpreted from the relative abundance of lowland and highland vegetation. The results include a lifting of the altitudinal forest limits attributed to warming pulses between 13,000-10,000 cal yr BP and between 7000-6000 cal yr BP, and a decline of lowland relative to upland forest taxa interpreted as cooling trends between 10,000-7000 cal yr BP and over the last 3000 years. The second record gives 15,000-year temperature and precipitation reconstructions from a peatbog in northern New Zealand (38°S), based on pollen and charcoal analysis. Temperature changes are assessed based on two quantitate reconstructions, whereas precipitation trends are inferred from variations in arboreal taxa with different drought tolerances. A long-term warming is inferred between 14,600-10,000 cal yr BP. Persistent dry conditions are recorded between 12,000-10,000 cal yr BP, followed by a long-term wet period between 10,000-6000 cal yr BP. The last 7000 years feature a long-term drying trend that culminates with persistent drier conditions over the last 3000 years. The third record provides a 16,000-year reconstruction from a small lake in Northwestern Patagonia (43°S), based on pollen and charcoal analysis. Climate conditions are inferred from the relative variations of pollen types with distinctive climate tolerances and complemented with changes in fire activity. These variations are in turn interpreted as resulting from changes in the position and/or strength of the Southern Westerly Winds (SWW). Cold and moist conditions attributable to stronger/northward-shifted SWW winds are observed between 16,000-13,600 cal yr BP. In contrast, warm and dry conditions suggestive of weaker/southward-shifted SWW are detected between 12,000-10,000 cal yr BP. The last 6000 years shows a trend towards colder conditions and increasing precipitation variability, suggesting a highly variable westerly flow over Patagonia. A comparison between the New Zealand and the Patagonia records suggest: (1) weakened/southward-shifted westerly flow over the southern mid-latitudes between 13,000-10,000 cal yr BP caused rapid warming and peak temperatures in New Zealand, as well as dry conditions in Northern New Zealand, (2) Enhanced/northward-shifted SWW over the southern mid-latitudes between 9000-4000 cal yr BP caused decreasing temperatures in the South Island and increasing precipitation in Northern New Zealand and (3) Overall weakened/southward-shifted SWW after 4000 cal yr BP caused a decrease in temperature in the southern New Zealand site. Drier conditions in Northern New Zealand and the overall increase in climate instability at all sites may have resulted from more frequent El Niño events along with an increase in sub-tropical climate variability.</p>


2021 ◽  
Author(s):  
◽  
Ignacio Alonso Jara Parra

<p>Climate variability in New Zealand (34-47°S), a long, narrow continental strip straddling the mid-latitudes of the Southern Hemisphere, results largely from the interplay between sub-tropical and sub-Antarctic atmospheric and oceanic circulation systems. Despite their importance to present-day New Zealand climate, these hemispheric-wide systems have only recently come under the spotlight of paleo-climate investigations with most attention having traditionally been centred on reconstructing climate trends. This PhD adopts a broader approach to climate reconstruction, by developing and comparing two new pollen-climate reconstructions from New Zealand (38-42°S) and one from Patagonia, Southern Chile (43°S). At each site, paleo-climate interpretations are based on the changes in climate-sensitive plant indicators. The influence of hemispheric atmospheric circulation on New Zealand climate history is assessed by: (1) comparing New Zealand climate/vegetation trends with published proxies from low- and high-latitudes, and (2) comparing New Zealand reconstructions with the Patagonian record. Finally, a multi-millennial pattern of Southern Hemisphere circulation over the last 14,000 cal yr BP (calendar years before AD 1950) is outlined. The first record presented is a 16,000-year temperature reconstruction from a small alpine lake in South Island, New Zealand (41°S), based on pollen and plant macrofossils. Climate variations are interpreted from the relative abundance of lowland and highland vegetation. The results include a lifting of the altitudinal forest limits attributed to warming pulses between 13,000-10,000 cal yr BP and between 7000-6000 cal yr BP, and a decline of lowland relative to upland forest taxa interpreted as cooling trends between 10,000-7000 cal yr BP and over the last 3000 years. The second record gives 15,000-year temperature and precipitation reconstructions from a peatbog in northern New Zealand (38°S), based on pollen and charcoal analysis. Temperature changes are assessed based on two quantitate reconstructions, whereas precipitation trends are inferred from variations in arboreal taxa with different drought tolerances. A long-term warming is inferred between 14,600-10,000 cal yr BP. Persistent dry conditions are recorded between 12,000-10,000 cal yr BP, followed by a long-term wet period between 10,000-6000 cal yr BP. The last 7000 years feature a long-term drying trend that culminates with persistent drier conditions over the last 3000 years. The third record provides a 16,000-year reconstruction from a small lake in Northwestern Patagonia (43°S), based on pollen and charcoal analysis. Climate conditions are inferred from the relative variations of pollen types with distinctive climate tolerances and complemented with changes in fire activity. These variations are in turn interpreted as resulting from changes in the position and/or strength of the Southern Westerly Winds (SWW). Cold and moist conditions attributable to stronger/northward-shifted SWW winds are observed between 16,000-13,600 cal yr BP. In contrast, warm and dry conditions suggestive of weaker/southward-shifted SWW are detected between 12,000-10,000 cal yr BP. The last 6000 years shows a trend towards colder conditions and increasing precipitation variability, suggesting a highly variable westerly flow over Patagonia. A comparison between the New Zealand and the Patagonia records suggest: (1) weakened/southward-shifted westerly flow over the southern mid-latitudes between 13,000-10,000 cal yr BP caused rapid warming and peak temperatures in New Zealand, as well as dry conditions in Northern New Zealand, (2) Enhanced/northward-shifted SWW over the southern mid-latitudes between 9000-4000 cal yr BP caused decreasing temperatures in the South Island and increasing precipitation in Northern New Zealand and (3) Overall weakened/southward-shifted SWW after 4000 cal yr BP caused a decrease in temperature in the southern New Zealand site. Drier conditions in Northern New Zealand and the overall increase in climate instability at all sites may have resulted from more frequent El Niño events along with an increase in sub-tropical climate variability.</p>


2021 ◽  
Vol 13 (22) ◽  
pp. 4555
Author(s):  
Konstantina Nakoudi ◽  
Christoph Ritter ◽  
Iwona S. Stachlewska

Cirrus is the only cloud type capable of inducing daytime cooling or heating at the top of the atmosphere (TOA) and the sign of its radiative effect highly depends on its optical depth. However, the investigation of its geometrical and optical properties over the Arctic is limited. In this work the long-term properties of cirrus clouds are explored for the first time over an Arctic site (Ny-Ålesund, Svalbard) using lidar and radiosonde measurements from 2011 to 2020. The optical properties were quality assured, taking into account the effects of specular reflections and multiple-scattering. Cirrus clouds were generally associated with colder and calmer wind conditions compared to the 2011–2020 climatology. However, the dependence of cirrus properties on temperature and wind speed was not strong. Even though the seasonal cycle was not pronounced, the winter-time cirrus appeared under lower temperatures and stronger wind conditions. Moreover, in winter, geometrically- and optically-thicker cirrus were found and their ice particles tended to be more spherical. The majority of cirrus was associated with westerly flow and westerly cirrus tended to be geometrically-thicker. Overall, optically-thinner layers tended to comprise smaller and less spherical ice crystals, most likely due to reduced water vapor deposition on the particle surface. Compared to lower latitudes, the cirrus layers over Ny-Ålesund were more absorbing in the visible spectral region and they consisted of more spherical ice particles.


Author(s):  
Kjell zum Berge ◽  
Martin Schoen ◽  
Moritz Mauz ◽  
Andreas Platis ◽  
Bram van Kesteren ◽  
...  

AbstractThe airborne measurement platform MASC-3 (Multi-Purpose Airborne Sensor Carrier) is used for measurements over a forested escarpment in the Swabian Alps to evaluate the wind field. Data from flight legs between 20 and 200 m above the ground on two consecutive days with uphill (westerly) flow in September 2018 are analyzed. In the lowest 140 m above the ground a speed-up is found with increased turbulence and changes in wind direction directly over the escarpment, whereas in the lowest 20 to 50 m above the ground a deceleration of the flow is measured. Additionally, simulation results from a numerical model chain based on the Weather Research and Forecasting (WRF) model and an OpenFOAM (Open Source Field Operation and Manipulation) model, developed for complex terrain, are compared to the data captured by MASC-3. The models and measurements compare well for the mean wind speed and inclination angle.


2021 ◽  
Author(s):  
George Miloshevich ◽  
Dario Lucente ◽  
Corentin Herbert ◽  
Freddy Bouchet

&lt;p&gt;One of the big challenges today is to appropriately describe heat waves, which are relevant due to their impact on human society. Common characteristics in mid-latitudes involve meanders of the westerly flow and concomitant large anticyclonic anomalies of the geopotential field. These anomalies form the so-called teleconnection patterns, and thus it is natural to ask how robust such structures are in various models and how much data we require to make statistically significant inferences. In addition, it is natural to ask what are the precursor phenomena that would improve forecasting capabilities of the heat waves. In particular, what kind of long term effect does the soil moisture have and how it compares to the respective quantitative contribution to the predictability of the teleconnection patterns.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;In order to answer these questions we perform various types of regression on a climate model. We construct the composite maps of the geopotential height at 500 hPa and estimate return times of heatwaves of different severity. Of particular interest to us is a committor function, which is essentially a probability a heat wave occurs&lt;span&gt; given the current state of the system. Committor functions can be efficiently computed using the analogue method, which involves learning a Markov chain that produces synthetic trajectories from the real trajectories. Alternatively they can be estimated using machine learning approach. Finally we compare the composite maps in real dynamics to the ones generated by the Markov chain and observe how well the rare events are sampled, for instance to allow extending the return time plots. &lt;/span&gt;&lt;/p&gt;


2021 ◽  
Author(s):  
Jayesh Phadtare ◽  
Jennifer Fletcher ◽  
Andrew Ross ◽  
Andy Turner ◽  
Thorwald Stein ◽  
...  

&lt;p&gt;Precipitation distribution around an orographic barrier is controlled by the Froude Number (Fr) of the impinging flow. Fr is essentially a ratio of kinetic energy and stratification of winds around the orography. For Fr &gt; 1 (Fr &lt;1), the flow is unblocked (blocked) and precipitation occurs over the mountain peaks and the lee region (upwind region). While idealized modelling studies have robustly established this relationship, its widespread real-world application is hampered by the dearth of relevant observations. Nevertheless, the data collected in the field campaigns give us an opportunity to explore this relationship and provide a testbed for numerical models. A realistic distribution of precipitation over a mountainous region in these models is necessary for flash-flood and landslide forecasting. The Western Ghats region is a classic example where the orographically induced precipitation leads to floods and landslides during the summer monsoon season. In the recent INCOMPASS field campaign, it was shown that the precipitation over the west coast of India occurred in alternate offshore and onshore phases. The Western Ghats received precipitation predominantly during the onshore phase which was characterized by a stronger westerly flow. Here, using the radiosonde data from a station over the Indian west coast and IMERG precipitation product, we show that climatologically, these phases can be mapped over an Fr-based classification of the monsoonal westerly flow. Classifying the flow as 'High Fr' (Fr &gt;1), 'Moderate Fr' ( 0.5 &lt; Fr &amp;#8804; 1) and 'Low Fr' ( Fr &amp;#8804; 0.5 ) gives three topographical modes of precipitation -- 'Orographic', 'Coastal' and 'Offshore', respectively. &amp;#160;Moreover, these modes are not sensitive to the choice of radiosonde station over the west coast.&lt;/p&gt;


2021 ◽  
Author(s):  
Sonja Murto ◽  
Rodrigo Caballero ◽  
Gunilla Svensson ◽  
Lukas Papritz

&lt;p&gt;Atmospheric blocking can influence Arctic weather by diverting the mean westerly flow polewards, bringing warm, moist air to high latitudes. Recent studies have shown that diabatic heating processes in the ascending warm conveyor belt branch of extratropical cyclones are relevant to blocking dynamics. This leads to the question of the extent to which diabatic heating associated with mid-latitude cyclones may influence high-latitude blocking and drive Arctic warm events. In this study we investigate the dynamics behind 50 extreme warm events of wintertime high Arctic surface temperature anomalies. We find that 30 of these events are associated with &amp;#8220;Ural&amp;#8221; blocking, featuring negative upper-level PV anomalies over central Siberia north of the Ural Mountains. Lagrangian back-trajectory calculations show that almost 70% of the air parcels making up these negative PV anomalies experience lifting and diabatic heating (average 14,7 K) in the 9-days prior to blocking. Further, 43,4 % of the heated trajectories undergo maximum heating and lifting in a compact region of the midlatitude North Atlantic, temporally taking place between 6 and 2.5 days before arriving in the blocking region. These trajectories mainly reside in the subtropics before being advected into the lifting region. We also find anomalously high cyclonic activity (on average 3,9 cyclones within a 3,5-day window around the time of maximum lifting) within a sector northwest of the main lifting domain. This study highlights the importance of the interaction between mid-latitude cyclones and Eurasian blocking as driver for Arctic warm extremes.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document