homogeneous riemannian manifolds
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 6)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Vol 60 (1) ◽  
pp. 17-22
Author(s):  
Tatiana A. Andreeva ◽  
Dmitry N. Oskorbin ◽  
Evgeny D. Rodionov

Conformally Killing fields play an important role in the theory of Ricci solitons and also generate an important class of locally conformally homogeneous (pseudo) Riemannian manifolds. In the Riemannian case, V. V. Slavsky and E.D. Rodionov proved that such spaces are either conformally flat or conformally equivalent to locally homogeneous Riemannian manifolds. In the pseudo-Riemannian case, the question of their structure remains open. Pseudo-Riemannian symmetric spaces of order k, where k 2, play an important role in research in pseudo-Riemannian geometry. Currently, they have been investigated in cases k=2,3 by D.V. Alekseevsky, A.S. Galaev and others. For arbitrary k, non-trivial examples of such spaces are known: generalized Kachen - Wallach manifolds. In the case of small dimensions, these spaces and Killing vector fields on them were studied by D.N. Oskorbin, E.D. Rodionov, and I.V. Ernst with the helpof systems of computer mathematics. In this paper, using the Sagemath SCM, we investigate conformally Killing vector fields on five-dimensional indecomposable 2- symmetric Lorentzian manifolds, and construct an algorithm for their computation.


Author(s):  
D.V. Vylegzhanin ◽  
P.N. Klepikov ◽  
O.P. Khromova

The problem of restoring a (pseudo)Riemannian manifold  from a given Ricci operator was studied in the papers of many mathematicians. This problem was solved by O. Kowalski and S. Nikcevic for the case of three-dimensional locally homogeneous Riemannian manifolds. The work of G. Calvaruso and O. Kowalski contains the answer to the question above for the case of three –dimensional locally homogeneous Lorentzian manifolds. For the four-dimensional case, similar studies were carried out only in the case of Lie groups with a left-invariant Riemannian metric. The works of A.G. Kremlyov and Yu.G. Nikonorov presented the possible signatures of the eigenvalues of the Ricci operator. However, the question of recovering a four-dimensional Lie group with a left-invariant Riemannian metric from a given Ricci operator remains open. This paper is devoted to the study of the eigenvalues of the Ricci operator on four-dimensional locally homogeneous (pseudo)Riemannian manifolds with a four-dimensional isotropy subgroup. An algorithm for calculating the eigenvalues of the Ricci operator is presented. A theorem on the restoration of such manifolds from a given Ricci operator is proved. It is established that such possibility can happen only in the case when the prescribed operator is diagonalizable and has a unique eigenvalue of multiplicity four.


Author(s):  
S.V. Klepikova ◽  
T.P. Makhaeva

It is known that a locally homogeneous manifold can be obtained from a locally conformally homogeneous (pseudo)Riemannian manifolds by a conformal deformation if the Weyl tensor (or the Schouten-Weyl tensor in the three-dimensional case) has a nonzero squared length. Thus, the problem arises of studying (pseudo)Riemannian locally homogeneous and locally conformally homogeneous manifolds, the Weyl tensor of which has zero squared length, and itself is not equal to zero (in this case, the Weyl tensor is called isotropic). One of the important aspects in the study of such manifolds is the study of the curvature operators on them, namely, the problem of restoring a (pseudo)Riemannian manifold from a given Ricci operator. The problem of the prescribed values of the Ricci operator on 3-dimensional locally homogeneous Riemannian manifolds has been solved by O. Kowalski and S. Nikcevic. Analogous results for the one-dimensional and sectional curvature operators were obtained by D.N. Oskorbin, E.D. Rodionov, and O.P Khromova. This paper is devoted to the description of an example of studying the problem of the prescribed Ricci operator for four-dimensional locally homogeneous (pseudo) Riemannian manifolds with a nontrivial isotropy subgroup and isotropic Weyl tensor.


2017 ◽  
Vol 19 (1) ◽  
pp. 221-254 ◽  
Author(s):  
Jürgen Berndt ◽  
Carlos Olmos ◽  
Silvio Reggiani

2015 ◽  
Vol 195 (5) ◽  
pp. 1619-1637 ◽  
Author(s):  
P. M. Gadea ◽  
J. C. González-Dávila ◽  
J. A. Oubiña

Sign in / Sign up

Export Citation Format

Share Document