tortoise coordinate
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 4)

H-INDEX

4
(FIVE YEARS 0)

2020 ◽  
Vol 35 (36) ◽  
pp. 2050298
Author(s):  
Abdul Jawad ◽  
Muhammad Yasir ◽  
Shamaila Rani

The Joule–Thomson effect and quasinormal modes (QNM) onto regular non-minimal magnetic charged black hole with a cosmological constant are being investigated. For this purpose, we extract some thermodynamical parameters such as pressure [Formula: see text] and mass [Formula: see text] in the presence of magnetic [Formula: see text] as well as electric [Formula: see text] charge. These parameters lead to inversion temperature [Formula: see text], pressure [Formula: see text] and corresponding isenthalpic curves. We introduce the tortoise coordinate and the Klein–Gordon wave equation which leads to the second-order ordinary Schrödinger equation. We find out the complex frequencies of QNMs through the massless scalar field perturbation which satisfy boundary conditions by using the first-order Wentzel–Kramers–Brillouin (WKB) technique.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
M Sharif ◽  
Qanitah Ama-Tul-Mughani

Abstract This paper is devoted to deriving an analytic expression of the greybody factor for a rotating black hole surrounded by quintessence. Primarily, we transform the radial part of the Klein–Gordon equation into the standard Schrödinger equation through the tortoise coordinate to analyze the profile of the effective potential. Asymptotic solutions are obtained in two distinct regions, namely, the black hole and cosmological horizons determined by the quintessential field. We then extrapolate these solutions and match them smoothly in an intermediate region to extend the viability over the whole radial regime. To elaborate the significance of the analytical solution, we evaluate the emission rates and absorption cross-section for the massless scalar fields. It is found that the accelerated expansion of the universe corresponding to smaller values of the state parameter minimizes the effective potential and consequently increases the emission process of the scalar field particles.


2019 ◽  
Vol 34 (29) ◽  
pp. 1950242
Author(s):  
Ding-Qun Chao ◽  
Shu-Zheng Yang ◽  
Zhong-Wen Feng

In this paper, we derived Hamilton–Jacobi equation for spin 1/2 and 3/2 fermions from Dirac equation and Rarita–Schwinger equation. Then, by using the Hamilton–Jacobi equation and general tortoise coordinate transformation, the tunneling rate and Hawking temperatures of a nonstationary axisymmetric symmetry black hole are investigated. The result shows that the tunneling rate, temperature and surface gravity are all related to the properties of horizons of the black hole, the cosmological constant [Formula: see text], the charge [Formula: see text], mass of black hole [Formula: see text] and the Eddington time [Formula: see text].


2017 ◽  
Vol 2017 ◽  
pp. 1-15
Author(s):  
T. Ibungochouba Singh

Using the generalized tortoise coordinate transformations the quantum radiation properties of Klein-Gordon scalar particles, Maxwell’s electromagnetic field equations, and Dirac equations are investigated in general nonstationary black hole. The locations of the event horizon and the Hawking temperature depend on both time and angles. A new extra coupling effect is observed in the thermal radiation spectrum of Maxwell’s equations and Dirac equations which is absent in the thermal radiation spectrum of scalar particles. We also observe that the chemical potential derived from scalar particles is equal to the highest energy of the negative-energy state of the scalar particle in the nonthermal radiation in general nonstationary black hole. Applying generalized tortoise coordinate transformation a constant termξis produced in the expression of thermal radiation in general nonstationary black hole. It indicates that generalized tortoise coordinate transformation is more accurate and reliable in the study of thermal radiation of black hole.


2016 ◽  
Vol 25 (05) ◽  
pp. 1650061 ◽  
Author(s):  
T. Ibungochouba Singh ◽  
I. Ablu Meitei ◽  
K. Yugindro Singh

Quantum radiation properties of nonstationary Kerr–de Sitter (KdS) black hole is investigated using the method of generalized tortoise coordinate transformation. The locations of horizons and the temperature of the thermal radiation as well as the maximum energy of the nonthermal radiation are derived. It is found that the surface gravity and the Hawking temperature depend on both time and different angles. An extra coupling effect is obtained in the thermal radiation spectrum of Maxwell’s electromagnetic field equations which is absent in the thermal radiation spectrum of scalar particles. Further, the chemical potential derived from the thermal radiation spectrum of scalar particle has been found to be equal to the highest energy of the negative energy state of the scalar particle in the nonthermal radiation for KdS black hole. It is also shown that the generalized tortoise coordinate transformation produces a constant term in the expression of the surface gravity and Hawking temperature.


2014 ◽  
Vol 23 (04) ◽  
pp. 1450030 ◽  
Author(s):  
JUN LIANG ◽  
FANG-HUI ZHANG ◽  
WEI ZHANG ◽  
JING ZHANG

By utilizing the improved Damour–Ruffini method with a new tortoise transformation, we study the Hawking radiation of Dirac particles from a general dynamical spherically symmetric black hole. In the improved Damour–Ruffini method, the position of the event horizon of the black hole is an undetermined function, and the temperature parameter κ is an undetermined constant. By requiring the Dirac equation to be the standard wave equation near the event horizon of the black hole, κ can be determined automatically. Therefore, the Hawking temperature can be obtained. The result is consistent with that of the Hawking radiation of scalar particles.


Sign in / Sign up

Export Citation Format

Share Document