hyperphosphorylated tau protein
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 31)

H-INDEX

18
(FIVE YEARS 3)

Author(s):  
Augusto F. Uberti ◽  
Natália Callai-Silva ◽  
Matheus V. C. Grahl ◽  
Angela R. Piovesan ◽  
Eduarda G. Nachtigall ◽  
...  

Alzheimer’s disease (AD) causes dementia and memory loss in the elderly. Deposits of beta-amyloid peptide and hyperphosphorylated tau protein are present in AD’s brain. A filtrate of Helicobacter pylori’s culture was previously found to induce hyperphosphorylation of tau in vivo, suggesting that bacterial exotoxins could permeate the blood brain barrier and directly induce tau’s phosphorylation. H. pylori, which infects ~60% of the world population and causes gastritis and gastric cancer, produces a pro-inflammatory urease (HPU). Here the neurotoxic potential of HPU was investigated in cultured cells and in rats. SH-SY5Y neuroblastoma cells exposed HPU (50-300 nM) produced reactive oxygen species (ROS) and had an increased [Ca2+]i. HPU-treated BV-2 microglial cells produced ROS, cytokines IL-1β and TNF-α, expressed Iba1 and showed reduced viability, consistent with a neurotoxic effect of HPU. Rats received daily i.p. HPU (5 µg) for 7 days. Hyperphosphorylation of tau at Thr205, Ser199 and Ser396 sites was seen in hippocampal homogenates of treated rats, with no alterations in total tau or GSK-3b levels. HPU was not detected in the brain homogenates. Behavioral tests were performed to assess cognitive impairments. Our findings support previous data suggesting an association between infection by H. pylori and tauopathies such as AD, possibly mediated by its urease.


2021 ◽  
Vol 15 ◽  
Author(s):  
Likui Lu ◽  
Xi Yu ◽  
Yongle Cai ◽  
Miao Sun ◽  
Hao Yang

Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disorder clinically characterized by cognitive impairment, abnormal behavior, and social deficits, which is intimately linked with excessive β-amyloid (Aβ) protein deposition along with many other misfolded proteins, neurofibrillary tangles formed by hyperphosphorylated tau protein aggregates, and mitochondrial damage in neurons, leading to neuron loss. Currently, research on the pathological mechanism of AD has been elucidated for decades, still no effective treatment for this complex disease was developed, and the existing therapeutic strategies are extremely erratic, thereby leading to irreversible and progressive cognitive decline in AD patients. Due to gradually mental dyscapacitating of AD patients, AD not only brings serious physical and psychological suffering to patients themselves, but also imposes huge economic burdens on family and society. Accordingly, it is very imperative to recapitulate the progress of gene editing-based precision medicine in the emerging fields. In this review, we will mainly focus on the application of CRISPR/Cas9 technique in the fields of AD research and gene therapy, and summarize the application of CRISPR/Cas9 in the aspects of AD model construction, screening of pathogenic genes, and target therapy. Finally, the development of delivery systems, which is a major challenge that hinders the clinical application of CRISPR/Cas9 technology will also be discussed.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Viktoriya Zhuravleva ◽  
João Vaz-Silva ◽  
Mei Zhu ◽  
Patricia Gomes ◽  
Joana M. Silva ◽  
...  

AbstractChronic stress and elevated glucocorticoids (GCs), the major stress hormones, are risk factors for Alzheimer’s disease (AD) and promote AD pathomechanisms, including overproduction of toxic amyloid-β (Aβ) peptides and intraneuronal accumulation of hyperphosphorylated Tau protein. The latter is linked to downregulation of the small GTPase Rab35, which mediates Tau degradation via the endolysosomal pathway. Whether Rab35 is also involved in Aβ overproduction remains an open question. Here, we find that hippocampal Rab35 levels are decreased not only by stress/GC but also by aging, another AD risk factor. Moreover, we show that Rab35 negatively regulates Aβ production by sorting amyloid precursor protein (APP) and β-secretase (BACE1) out of the endosomal network, where they interact to produce Aβ. Interestingly, Rab35 coordinates distinct intracellular trafficking steps for BACE1 and APP, mediated by its effectors OCRL and ACAP2, respectively. Finally, we demonstrate that Rab35 overexpression prevents the amyloidogenic trafficking of APP and BACE1 induced by high GC levels. These studies identify Rab35 as a key regulator of APP processing and suggest that its downregulation may contribute to stress-related and AD-related amyloidogenesis.


2021 ◽  
Vol 11 (11) ◽  
pp. 1116
Author(s):  
Shadab Md ◽  
Nabil A. Alhakamy ◽  
Mohamed A. Alfaleh ◽  
Obaid Afzal ◽  
Abdulmalik S. A. Altamimi ◽  
...  

Alzheimer’s disease (AD) is a common neurodegenerative disorder accountable for dementia and cognitive dysfunction. The etiology of AD is complex and multifactorial in origin. The formation and deposition of amyloid-beta (Aβ), hyperphosphorylated tau protein, neuroinflammation, persistent oxidative stress, and alteration in signaling pathways have been extensively explored among the various etiological hallmarks. However, more recently, the immunogenic regulation of AD has been identified, and macroglial activation is considered a limiting factor in its etiological cascade. Macroglial activation causes neuroinflammation via modulation of the NLRP3/NF-kB/p38 MAPKs pathway and is also involved in tau pathology via modulation of the GSK-3β/p38 MAPK pathways. Additionally, microglial activation contributes to the discrete release of neurotransmitters and an altered neuronal synaptic plasticity. Therefore, activated microglial cells appear to be an emerging target for managing and treating AD. This review article discussed the pathology of microglial activation in AD and the role of various nanocarrier-based anti-Alzeihmenr’s therapeutic approaches that can either reverse or inhibit this activation. Thus, as a targeted drug delivery system, nanocarrier approaches could emerge as a novel means to overcome existing AD therapy limitations.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1874
Author(s):  
Ines Moreno-Gonzalez ◽  
George A. Edwards ◽  
Omar Hasan ◽  
Nazaret Gamez ◽  
Jonathan E. Schulz ◽  
...  

Several common and debilitating neurodegenerative disorders are characterized by the intracellular accumulation of neurofibrillary tangles (NFTs), which are composed of hyperphosphorylated tau protein. In Alzheimer’s disease (AD), NFTs are accompanied by extracellular amyloid-beta (Aβ), but primary tauopathy disorders are marked by the accumulation of tau protein alone, including forms of frontotemporal dementia (FTD), corticobasal degeneration (CBD), and progressive supranuclear palsy (PSP), among others. 18F-THK5351 has been reported to bind pathological tau as well as associated reactive astrogliosis. The goal of this study was to validate the ability of the PET tracer 18F-THK5351 to detect early changes in tau-related pathology and its relation to other pathological hallmarks. We demonstrated elevated in vivo 18F-THK5351 PET signaling over time in transgenic P301S tau mice from 8 months that had a positive correlation with histological and biochemical tau changes, as well as motor, memory, and learning impairment. This study indicates that 18F-THK5351 may help fill a critical need to develop PET imaging tracers that detect aberrant tau aggregation and related neuropathology in order to diagnose the onset of tauopathies, gain insights into their underlying pathophysiologies, and to have a reliable biomarker to follow during treatment trials.


2021 ◽  
Author(s):  
Fumiko Konishi ◽  
Tadasu Furusho ◽  
Yoshiyuki Soeda ◽  
Jun Yamauchi ◽  
Shoko Kobayashi ◽  
...  

Abstract Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the accumulation of extracellular amyloid-beta peptides (Aβ) resulting in senile plaques and intracellular hyperphosphorylated tau protein resulting in neurofibrillary tangles (NFTs). Mucuna beans (Mucuna pruriences (L.) DC. var. utilis) are unique plants containing 3%–9% L-3,4-dihydroxyphenylalanine (L-DOPA). Here we investigated the effect of the administration of Mucuna beans on AD prevention by feeding triple-transgenic mice (3×Tg-AD mice) with a diet containing Mucuna beans for 13 months. The levels of Aβ oligomers and detergent-insoluble phosphorylated tau decreased in the brain of mice fed with Mucuna beans (Mucuna group) compared to those of the Control group. Aβ accumulation and phosphorylated tau accumulation in the brain in the Mucuna group were also reduced. In addition, administration of Mucuna beans improved cognitive function. These results suggest that administration of Mucuna beans may have a preventive effect on AD development in 3×Tg-AD mice.


2021 ◽  
pp. 1-12
Author(s):  
Umma Habiba ◽  
Makiko Ozawa ◽  
James K. Chambers ◽  
Kazuyuki Uchida ◽  
Joseph Descallar ◽  
...  

Background: Canine cognitive dysfunction (CCD) is a progressive syndrome recognized in mature to aged dogs with a variety of neuropathological changes similar to human Alzheimer’s disease (AD), for which it is thought to be a good natural model. However, the presence of hyperphosphorylated tau protein (p-Tau) in dogs with CCD has only been demonstrated infrequently. Objective: The aim of the present study was to investigate the presence of p-Tau and amyloid-β oligomer (Aβo) in cerebral cortex and hippocampus of dogs with CCD, with focus on an epitope retrieval protocol to unmask p-Tau. Methods: Immunohistochemical and immunofluorescence analysis of the cortical and hippocampal regions of five CCD-affected and two nondemented aged dogs using 4G8 anti-Aβp, anti-Aβ 1 - 42 nanobody (PrioAD13) and AT8 anti-p-Tau (Ser202, Thr205) antibody were used to demonstrate the presence of Aβ plaques (Aβp) and Aβ 1 - 42 oligomers and p-Tau deposits, respectively. Results: The extracellular Aβ senile plaques were of the diffuse type which lack the dense core normally seen in human AD. While p-Tau deposits displayed a widespread pattern and closely resembled the typical human neuropathology, they did not co-localize with the Aβp. Of considerable interest, however, widespread intraneuronal deposition of Aβ 1 - 42 oligomers were exhibited in the frontal cortex and hippocampal region that co-localized with p-Tau. Conclusion: Taken together, these findings reveal further shared neuropathologic features of AD and CCD, supporting the case that aged dogs afflicted with CCD offer a relevant model for investigating human AD.


2021 ◽  
Author(s):  
Jessica Noll ◽  
Catherine Augello ◽  
Esra Kurum ◽  
Liuliu Pan ◽  
Anna Pavenko ◽  
...  

Stroke is ranked as the fifth leading cause of death and the leading cause of adult disability. The progression of neuronal damage after stroke is recognized to be a complex integration of glia, neurons, and the surrounding extracellular matrix, therefore potential treatments must target the detrimental effects created by these interactions. In this study, we examined the spatial cellular and neuroinflammatory mechanisms occurring early after ischemic stroke utilizing Nanostring Digital Spatial Profiling (DSP) technology. Male C57bl/6 mice were subjected to photothrombotic middle cerebral artery occlusion (MCAO) and sacrificed at three-days post-ischemia. Spatial distinction of the ipsilateral hemisphere was studied according to the regions of interest: the ischemic core, peri-infarct tissues, and peri-infarct normal tissue (PiNT) in comparison to the contralateral hemisphere. We demonstrated that the ipsilateral hemisphere initiates distinct spatial regulatory proteomic profiles with DSP technology that can be identified consistently with the immunohistochemical markers, FJB, GFAP, and Iba-1. The core border profile demonstrated an induction of neuronal death, apoptosis, autophagy, immunoreactivity, and early degenerative proteins. Most notably, the core border resulted in a decrease of the neuronal proteins Map2 and NeuN, an increase in the autophagy proteins BAG3 and CTSD, an increase in the microglial and peripheral immune invasion proteins Iba1, CD45, CD11b, and CD39, and an increase in the neurodegenerative proteins BACE1, APP, αβ 1-42, ApoE, and hyperphosphorylated tau protein S-199. The peri-infarct region demonstrated increased astrocytic immunoreactivity, apoptotic, and neurodegenerative proteomic profile, with an increase in BAG3, GFAP, and hyperphosphorylated tau protein S-199. The PiNT region displayed minimal changes compared to the contralateral cortex with only an increase in GFAP. Overall, our data highlight the importance of identifying ischemic mechanisms in a spatial manner to understand the complex, dynamic interactions throughout ischemic progression and repair as well to introduce potential targets for successful therapeutic interventions.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1261
Author(s):  
Laura D’Andrea ◽  
Ramona Stringhi ◽  
Monica Di Luca ◽  
Elena Marcello

Alzheimer’s disease (AD) is a neurodegenerative disorder representing the most common form of dementia. It is biologically characterized by the deposition of extracellular amyloid-β (Aβ) senile plaques and intracellular neurofibrillary tangles, constituted by hyperphosphorylated tau protein. The key protein in AD pathogenesis is the amyloid precursor protein (APP), which is cleaved by secretases to produce several metabolites, including Aβ and APP intracellular domain (AICD). The greatest genetic risk factor associated with AD is represented by the Apolipoprotein E ε4 (APOE ε4) allele. Importantly, all of the above-mentioned molecules that are strictly related to AD pathogenesis have also been described as playing roles in the cell nucleus. Accordingly, evidence suggests that nuclear functions are compromised in AD. Furthermore, modulation of transcription maintains cellular homeostasis, and alterations in transcriptomic profiles have been found in neurodegenerative diseases. This report reviews recent advancements in the AD players-mediated gene expression. Aβ, tau, AICD, and APOE ε4 localize in the nucleus and regulate the transcription of several genes, part of which is involved in AD pathogenesis, thus suggesting that targeting nuclear functions might provide new therapeutic tools for the disease.


2021 ◽  
Vol 19 ◽  
Author(s):  
Sanaz Keshavarz Shahbaz ◽  
Khadijeh Koushki ◽  
Thozhukat Sathyapalan ◽  
Muhammed Majeed ◽  
Amirhossein Sahebkar

: Progressive degeneration and dysfunction of the nervous system because of oxidative stress, aggregations of misfolded proteins, and neuroinflammation are the key pathological features of neurodegenerative diseases. Alzheimer's disease is a chronic neurodegenerative disorder driven by uncontrolled extracellular deposition of β-amyloid (Aβ) in the amyloid plaques and intracellular accumulation of hyperphosphorylated tau protein. Curcumin is a hydrophobic polyphenol with noticeable neuroprotective and anti-inflammatory effects that can cross the blood-brain barrier. Therefore, it is widely studied for the alleviation of inflammatory and neurological disorders. However, the clinical application of curcumin is limited due to its low aqueous solubility and bioavailability. Recently, nano-based curcumin delivery systems are developed to overcome these limitations effectively. This review article discusses the effects and potential mechanisms of curcumin-loaded PLGA nanoparticles in Alzheimer’s disease.


Sign in / Sign up

Export Citation Format

Share Document