model networks
Recently Published Documents


TOTAL DOCUMENTS

261
(FIVE YEARS 24)

H-INDEX

35
(FIVE YEARS 3)

2021 ◽  
Vol 53 (4) ◽  
pp. 1061-1089
Author(s):  
Remco van der Hofstad ◽  
Júlia Komjáthy ◽  
Viktória Vadon

AbstractRandom intersection graphs model networks with communities, assuming an underlying bipartite structure of communities and individuals, where these communities may overlap. We generalize the model, allowing for arbitrary community structures within the communities. In our new model, communities may overlap, and they have their own internal structure described by arbitrary finite community graphs. Our model turns out to be tractable. We analyze the overlapping structure of the communities, show local weak convergence (including convergence of subgraph counts), and derive the asymptotic degree distribution and the local clustering coefficient.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Quang Nguyen ◽  
Tuan V. Vu ◽  
Hanh-Duyen Dinh ◽  
Davide Cassi ◽  
Francesco Scotognella ◽  
...  

AbstractIn this paper we investigate how the modularity of model and real-world social networks affect their robustness and the efficacy of node attack (removal) strategies based on node degree (ID) and node betweenness (IB). We build Barabasi–Albert model networks with different modularity by a new ad hoc algorithm that rewire links forming networks with community structure. We traced the network robustness using the largest connected component (LCC). We find that when model networks present absent or low modular structure ID strategy is more effective than IB to decrease the LCC. Conversely, in the case the model network present higher modularity, the IB strategy becomes the most effective to fragment the LCC. In addition, networks with higher modularity present a signature of a 1st order percolation transition and a decrease of the LCC with one or several abrupt changes when nodes are removed, for both strategies; differently, networks with non-modular structure or low modularity show a 2nd order percolation transition networks when nodes are removed. Last, we investigated how the modularity of the network structure evaluated by the modularity indicator (Q) affect the network robustness and the efficacy of the attack strategies in 12 real-world social networks. We found that the modularity Q is negatively correlated with the robustness of the real-world social networks for both the node attack strategies, especially for the IB strategy (p-value < 0.001). This result indicates how real-world networks with higher modularity (i.e. with higher community structure) may be more fragile to node attack. The results presented in this paper unveil the role of modularity and community structure for the robustness of networks and may be useful to select the best node attack strategies in network.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ann S. Blevins ◽  
Jason Z. Kim ◽  
Dani S. Bassett

AbstractThe complex behavior of many real-world systems depends on a network of both strong and weak edges. Distinguishing between true weak edges and low-weight edges caused by noise is a common problem in data analysis, and solutions tend to either remove noise or study noise in the absence of data. In this work, we instead study how noise and data coexist, by examining the structure of noisy, weak edges that have been synthetically added to model networks. We find that the structure of low-weight, noisy edges varies according to the topology of the model network to which it is added, that at least three qualitative classes of noise structure emerge, and that these noisy edges can be used to classify the model networks. Our results demonstrate that noise does not present as a monolithic nuisance, but rather as a nuanced, topology-dependent, and even useful entity in characterizing higher-order network interactions.


2021 ◽  
Author(s):  
Qi Bao ◽  
Wanyue Xu ◽  
Zhongzhi Zhang

Abstract Edge centrality has found wide applications in various aspects. Many edge centrality metrics have been proposed, but the crucial issue that how good the discriminating power of a metric is, with respect to other measures, is still open. In this paper, we address the question about the benchmark of the discriminating power of edge centrality metrics. We first use the automorphism concept to define equivalent edges, based on which we introduce a benchmark for the discriminating power of edge centrality measures and develop a fast approach to compare the discriminating power of different measures. According to the benchmark, for a desirable measure, equivalent edges have identical metric scores, while inequivalent edges possess different scores. However, we show that even in a toy graph, inequivalent edges cannot be discriminated by three existing edge centrality metrics. We then present a novel edge centrality metric called forest centrality (FC). Extensive experiments on real-world networks and model networks indicate that FC has better discriminating power than three existing edge centrality metrics.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009092
Author(s):  
Nicholas Menghi ◽  
Kemal Kacar ◽  
Will Penny

This paper uses constructs from machine learning to define pairs of learning tasks that either shared or did not share a common subspace. Human subjects then learnt these tasks using a feedback-based approach and we hypothesised that learning would be boosted for shared subspaces. Our findings broadly supported this hypothesis with either better performance on the second task if it shared the same subspace as the first, or positive correlations over task performance for shared subspaces. These empirical findings were compared to the behaviour of a Neural Network model trained using sequential Bayesian learning and human performance was found to be consistent with a minimal capacity variant of this model. Networks with an increased representational capacity, and networks without Bayesian learning, did not show these transfer effects. We propose that the concept of shared subspaces provides a useful framework for the experimental study of human multitask and transfer learning.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Lifu Wang ◽  
Guotao Zhao ◽  
Zhi Kong ◽  
Yunkang Zhao

In a complex network, each edge has different functions on controllability of the whole network. A network may be out of control due to failure or attack of some specific edges. Bridges are a kind of key edges whose removal will disconnect a network and increase connected components. Here, we investigate the effects of removing bridges on controllability of network. Various strategies, including random deletion of edges, deletion based on betweenness centrality, and deletion based on degree of source or target nodes, are used to compare with the effect of removing bridges. It is found that the removing bridges strategy is more efficient on reducing controllability than the other strategies of removing edges for ER networks and scale-free networks. In addition, we also found the controllability robustness under edge attack is related to the average degree of complex networks. Therefore, we propose two optimization strategies based on bridges to improve the controllability robustness of complex networks against attacks. The effectiveness of the proposed strategies is demonstrated by simulation results of some model networks. These results are helpful for people to understand and control spreading processes of epidemic across different paths.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Chih-Chiang Wei

Taiwan, being located on a path in the west Pacific Ocean where typhoons often strike, is often affected by typhoons. The accompanying strong winds and torrential rains make typhoons particularly damaging in Taiwan. Therefore, we aimed to establish an accurate wind speed prediction model for future typhoons, allowing for better preparation to mitigate a typhoon’s toll on life and property. For more accurate wind speed predictions during a typhoon episode, we used cutting-edge machine learning techniques to construct a wind speed prediction model. To ensure model accuracy, we used, as variable input, simulated values from the Weather Research and Forecasting model of the numerical weather prediction system in addition to adopting deeper neural networks that can deepen neural network structures in the construction of estimation models. Our deeper neural networks comprise multilayer perceptron (MLP), deep recurrent neural networks (DRNNs), and stacked long short-term memory (LSTM). These three model-structure types differ by their memory capacity: MLPs are model networks with no memory capacity, whereas DRNNs and stacked LSTM are model networks with memory capacity. A model structure with memory capacity can analyze time-series data and continue memorizing and learning along the time axis. The study area is northeastern Taiwan. Results showed that MLP, DRNN, and stacked LSTM prediction error rates increased with prediction time (1–6 hours). Comparing the three models revealed that model networks with memory capacity (DRNN and stacked LSTM) were more accurate than those without memory capacity. A further comparison of model networks with memory capacity revealed that stacked LSTM yielded slightly more accurate results than did DRNN. Additionally, we determined that in the construction of the wind speed prediction model, the use of numerically simulated values reduced the error rate approximately by 30%. These results indicate that the inclusion of numerically simulated values in wind speed prediction models enhanced their prediction accuracy.


Sign in / Sign up

Export Citation Format

Share Document