weighted completion time
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 34)

H-INDEX

29
(FIVE YEARS 2)

2021 ◽  
Vol 11 (15) ◽  
pp. 7040
Author(s):  
Ayoub Tighazoui ◽  
Christophe Sauvey ◽  
Nathalie Sauer

Thanks to smart technological tools, customers can at any moment create or modify their commands. This reality forced many production firms to become sensitive in rescheduling processes. In the literature, most of rescheduling problems consider classical efficiency measures. However, some existing works also consider stability as a measure for limiting the deviation from initial schedule. In this work, we aim to bridge the gap in existing works on rescheduling by investigating a new approach to measure simultaneously efficiency by the total weighted waiting times and stability by the total weighted completion time deviation. This combination of criteria is very significant in industrial and hospital environments. In this paper, a single machine rescheduling problem with jobs arriving over time is considered. A mixed integer linear programming (MILP) model is designed for this problem and an iterative predictive-reactive strategy for dealing with the online part. Numerical results show that, at each time the jobs are rescheduled, the low weight ones move forward. Consequently, a new concept consisting in increasing the jobs weight as function of time is established. The effect of this new conception is evaluated by the evolution of the maximum flowtime. Eventually, the computing time of the MILP resolution is studied to explore its limitations.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Hongming Zhou ◽  
Ya-Chih Tsai ◽  
Shenquan Huang ◽  
Yarong Chen ◽  
Fuh-Der Chou

The single-machine scheduling problem with fixed periodic preventive maintenance, in which preventive maintenance is implemented periodically to maintain good machine operational status and decrease the cost caused by sudden machine failure, is studied in this paper. The adopted objective function is to minimise the total weighted completion time, which is representative of the minimisation of the global holding/inventory cost in the system. This problem is proven to be NP-hard; a position-based mixed integer programming model and an efficient heuristic algorithm with local improvement strategy are developed for the total weighted completion time problem. To evaluate the performances of the proposed heuristic algorithms, two new lower bounds are further developed. Computational experiments show that the proposed heuristic can rapidly achieve optimal results for small-sized problems and obtain near-optimal solutions with tight average relative percentage deviation for large-sized problems.


Sign in / Sign up

Export Citation Format

Share Document