mechanical linkage
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 1)

2022 ◽  
pp. 1-10
Author(s):  
Yohei Yamamoto ◽  
Jun Mitani

Abstract Origami techniques, as folding and unfolding, can be utilized in shrinkable structures. Especially when the crease pattern is rigid foldable, it can be treated as a mechanical linkage of rigid panels connected by hinges. Since rigid foldable crease patterns have the strong geometrical constraint of the facets not being able to stretch or bend, it is difficult to design new crease patterns, and variations of existing patterns are limited. However, it is known that there are cases where crease patterns can be made rigid foldable by adding some slits. This paper proposes a mechanical linkage that folds into a similar flat shape by adding slits. A method is presented of generating rigid foldable crease patterns in arbitrary polygons that fold smaller, and it is confirmed that structures that have a mechanism for shrinking can be generated from these crease patterns by using rigid thick panels and hinges.


2021 ◽  
Author(s):  
Yohei Yamamoto ◽  
Jun Mitani

Abstract Origami techniques, as folding and unfolding, can be utilized in shrinkable structures. Especially when the crease pattern is rigid foldable, it can be treated as a mechanical linkage of rigid panels connected by hinges. Since rigid foldable crease patterns have the strong geometrical constraint of the facets not being able to stretch or bend, it is difficult to design new crease patterns, and variations of existing patterns are limited. However, it is known that there are cases where crease patterns can be made rigid foldable by adding some slits. This paper proposes a mechanical linkage that folds into a similar flat shape by adding slits. A method is presented of generating rigid foldable crease patterns in arbitrary polygons that fold smaller, and it is confirmed that structures that have a mechanism for shrinking can be generated from these crease patterns by using rigid thick panels and hinges.


2021 ◽  
Author(s):  
Yuan Yao ◽  
Cheng Ding ◽  
Mohamed Aburaia ◽  
Maximilian Lackner ◽  
Lanlan He

Abstract The Fused Filament Fabrication process is the most used additive manufacturing process due to its simplicity and low operating costs. In this process, a thermoplastic filament is led through an extruder, melted, and applied to a building platform by the axial movements of an automated Cartesian system in such a way that a three-dimensional object is created layer by layer. Compared to other additive manufacturing technologies, the components produced have mechanical limitations and are often not suitable for functional applications. To reduce the anisotropy of mechanical strength in fused filament fabrication (FFF), this paper proposes a 3D weaving deposit path planning method that utilizes a 5-layer repetitive structure to achieve interlocking and embedding between neighbor slicing planes to improve the mechanical linkage within the layers. The developed algorithm extends the weaving path as an infill pattern to fill different structures and makes this process feasible on a standard three-axis 3D printer. Compared with 3D weaving printed parts by layer-to-layer deposit, the anisotropy of mechanical properties inside layers is significantly reduced to 10.21% and 0.98%.


2021 ◽  
pp. 21-26
Author(s):  
V. P. Marysyuk ◽  
G. V. Sabyanin ◽  
A. A. Andreev ◽  
M. A. Vilner

A bed of rock salt in Komsomolsky Mine occurs in sedimentary strata enclosing cage and skip shafts. When water enters rock salt via underground excavations, boreholes and fractures, rock salt can dissolve and wash out, and voids appear in rock mass. Voids at the lining and rock interface should be eliminated so that never re-appear or grow during shaft operation. Materials used to eliminate voids should ensure stable mechanical linkage both with enclosing rocks and lining. Assessment and analysis of geomechanical processes induced by leaching need monitoring of deformations in a shaft. To this effect, one of the simplest and most informative methods is arrangement of an observation station directly in the shaft lining to measure varying distances between check points. The article briefly describes activities aimed to eliminate voids using different composition grouts. From the analysis of monitoring data, the deformation mechanism is described, and the interaction between different deformation stages and grouting steps is determined. The authors appreciate participations of experts M. P. Sergunin, I. A. Shishkina, A. K. Ustinov, V. V. Tsatskin, V. S. Orlov.


2020 ◽  
Author(s):  
Sithara S. Wijeratne ◽  
Shane A. Fiorenza ◽  
Radhika Subramanian ◽  
Meredith D. Betterton

AbstractCoupling of motor proteins within arrays drives muscle contraction, flagellar beating, chromosome segregation, and other biological processes. Current models of motor coupling invoke either direct mechanical linkage or protein crowding, which rely on short-range motor-motor interactions. In contrast, coupling mechanisms that act at longer length scales remain largely unexplored. Here we report that microtubules can physically couple motor movement in the absence of short-range interactions. The human kinesin-4 Kif4A changes the run-length and velocity of other motors on the same microtubule in the dilute binding limit, when 10-nm-sized motors are separated by microns. This effect does not depend on specific motor-motor interactions because similar changes in Kif4A motility are induced by kinesin-1 motors. A micron-scale attractive interaction potential between motors is sufficient to recreate the experimental results in a computational model. Unexpectedly, our theory suggests that long-range microtubule-mediated coupling not only affects binding kinetics but also motor mechanochemistry. Therefore, motors can sense and respond to motors bound several microns away on a microtubule. These results suggest a paradigm in which the microtubule lattice, rather than being merely a passive track, is a dynamic medium responsive to binding proteins to enable new forms of collective motor behavior.


Author(s):  
Andrew Porter ◽  
Jassim Alhamid ◽  
Changki Mo ◽  
John Miller ◽  
Joseph Iannelli ◽  
...  

Abstract The newly designed 3-dimensional catching robot consists of three revolute joints where the forward linkage is a parallelogram mechanism for keeping the catching end-effector parallel to the picking manipulator’s base. A virtual apple field of 505 apples, designed to test the picking abilities of 7 DOF arm, was used to determine the capabilities of this new catching arm design. The target catching efficiency was 90% for the provided virtual apple field with a maximum drop height of 30 cm. The target coordinates for each virtual apple were found by computer simulation in MATLAB. Geometric parameters were selected such that the catching manipulator could reach every possible drop position in the picking manipulator’s workspace. The design was completed, fabricated, and validated, utilizing the elegant mechanical linkage design. The workspace analysis showed that it had an acceptable 93% catching efficiency, and as the drop height increased, the efficiency approaches 100%. Definitive inverse-kinematics provided exact joint angles required to catch all catchable apples inside of the workspace. Using these angles, the general equation of motion, using Lagrangian mechanics, yielded the required torque outputs of each of the three motors on the arm. Validation of these torques through laboratory experimentation was considered adequate.


2020 ◽  
Vol 65 (1) ◽  
pp. 1-15
Author(s):  
Rodolfo S. Sampaio ◽  
Michael Jones ◽  
Christian Walko

The state of the of art in flight control systems geared toward dual-pilot helicopters is the use of active inceptor systems to replace the traditional mechanical linkage between pilot and copilot inceptors. This work investigates the introduction of priority functions, which act to actively decouple inceptors in one control station. This approach has the potential to assist pilots to take over control in low-level flight and aid to mitigate loss-of-control accidents that occur in such conditions. Takeover control maneuvers are tested in a dual-pilot helicopter simulation environment to evaluate two inceptor decoupling methods, namely a priority pushbutton (manual) and a priority force threshold (automatic). Results indicate that the takeover maneuvers were successfully performed in low-level flight without over control (inaccurate control inputs) when using both priority functions. The priority functions led to a workload reduction when compared to a benchmark configuration without inceptor decoupling. Positive ratings in usefulness and satisfaction scales indicate pilot acceptance of the priority functions tested.


2019 ◽  
Vol 11 (4) ◽  
pp. 217-222 ◽  
Author(s):  
Ilie NICOLIN ◽  
Bogdan Adrian NICOLIN

This report shows the execution and evolution of airplane flight control systems. The report describes the development of airplane flight control systems and gives a survey of the principal phases of the flight control systems that assure the finding and execution of the fly-by-wire system. The development of flight control systems, from human control with mechanical links to a wire-driven computer, is a remarkable representation of the development of aeronautical technologies. The fly-by-wire system constitutes a fast-forwarding in aircraft design, from mechanical linkage to large hydraulic actuators to computer-assisted fly-by-wire system. The use of the fly-by-wire system has generated huge satisfaction for the aircraft industry by lessening the weight of the flight control system, by creating multiple redundancy flight control systems, which increases the flight safety of all aircraft equipped with the fly-by-wire system. The passage from analog to digital is another fast-forwarding in the development of fly-by-wire systems.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5186 ◽  
Author(s):  
Giulio D’Emilia ◽  
Antonella Gaspari ◽  
Emanuela Natale

In this paper, a methodology is described aiming at emphasizing physical and metrological criteria in feature selection for condition monitoring of a real scale mechatronic system. The device is used for packaging applications according to the movements of its end effector, driven by a couple of brushless servomotors and a kinematic mechanical linkage. The approach is hybrid, meaning that the starting feature set is built with reference to both experimental data from different sensors and to the indication of a simplified kinematic and dynamic model of the mechanical linkage itself. A critical comparison and mixing of theoretical and experimental data, based also on a physical interpretation of differences, suggests some more features, with respect to the classical ones, of hybrid type, which could be mostly correlated to the effects of statuses and defects of the system to be identified. The whole procedure is step by step validated, in order to evaluate the variability of features, throughout the whole procedure. The variability is analyzed depending on the actions that are realized in order to define, select, and use the proposed features for data processing by advanced algorithms, like the most typically used classifiers and artificial neural networks. A comparison with the state-of-the-art automatic feature’s selection procedure is also presented. Experimental results show that the proposed methodology is able to classify with high accuracy many statuses of the mechatronic system, which are only slightly different as for set-up settings and/or mechanical wear and lubrication conditions of mechanical parts of the mechatronic system. Issues to be pursued to a more effective generalization of the method are also discussed.


Author(s):  
Natacha Rosa ◽  
Miguel Marta ◽  
Mário Vaz ◽  
Sergio M O Tavares ◽  
Ricardo Simoes ◽  
...  

This article aims to review the biomechanical evolution of intramedullary nailing and describe the breakthrough concepts which allowed for nail improvement and its current success. The understanding of this field establishes an adequate background for forthcoming research and allows to infer on the path for future developments on intramedullary nailing. It was not until the 1940s, with the revolutionary Küntscher intramedullary nailing design, that this method was recognized as a widespread medical procedure. Such achievement was established based on the foundations created from intuition-based experiments and the first biomechanical ideologies. The nail evolved from allowing alignment and stability through press-fit fixation with nail-cortical wall friction to the nowadays nail stability achieved through interlocking screws mechanical linkage between nail and bone. Important landmarks during nail evolution comprise the introduction of flexible reaming, the progress from slotted to non-slotted nails design, the introduction of nail ‘dynamization’ and the use of titanium alloys as a new nail material. Current biomechanical improvement efforts aim to enhance the bone–intramedullary nail system stability. We suggested that benefit would be attained from a better understanding of the ideal mechano-biological environment at the fracture site, and future improvements will emerge from combining mechanics and biological tools.


Sign in / Sign up

Export Citation Format

Share Document