enso event
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 30)

H-INDEX

22
(FIVE YEARS 2)

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1662
Author(s):  
Alexander Polonsky ◽  
Anton Torbinsky

The Indian Ocean dipole (IOD) is one of the main modes characterizing the interannual variability of the large-scale ocean–atmosphere interaction in the equatorial zone of the World Ocean. A dipole manifests itself as an out-of-phase interannual fluctuation of the ocean–atmosphere characteristics in the western and eastern parts of the equatorial–tropical zone of the Indian Ocean. IOD can be a consequence of the ENSO (El Niño–Southern Oscillation) events in the Pacific Ocean, or it can be independent of them and arise due to the Indian Ocean inherent processes. Earlier, it was suggested that the generation of the long planetary waves in the Indian Ocean by the ENSO events is one of the mechanisms of the ENSO impact on the IOD. However, quite often, such a mechanism is not the case and IOD is generated itself as an independent Indian Ocean mode. We hypothesized that this generation is due to the growing oceanic disturbances, as a result of instability of the system of Indian Ocean zonal currents in the vicinity of the critical layer, in which the phase velocity of Rossby waves is equal to the average velocity of the zonal currents. In the present work, the study of the features of the formation of the critical layer in the equatorial–tropical zone of the Indian Ocean is continued using different oceanic re-analyses and standard theory of the Rossby waves. As a result of comparison of different re-analyses data with the RAMA (The Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction) measurements, the operative re-analysis ORAS5 output of European Centre for Medium-Range Weather Forecasts (ECMWF) on potential temperature, salinity, and the zonal component of the currents’ velocity for the period 1979–2018 was used. Monthly profiles of potential temperature, salinity, and the zonal component of the currents’ velocity were selected from the ORAS5 archive for the sections situated between 7.5–15.5° S and 50–100° E. From these data and for each month, using the standard theory of planetary waves, the phase velocity of the lowest baroclinic mode of the Rossby long waves was calculated and the critical layers were determined. For each critical layer, its length was calculated. The obtained time series of the length of the critical layers were compared to the variability of dipole mode index (DMI). It is shown that the majority of the cases of the IOD generation as inherent (independent on the Pacific processes) mode were accompanied by the critical layer formation in the region of interest. Usually, the critical layers occur in spring, one to two months before the onset of the positive IOD events. This indicates that the presence of instability in the system of the zonal currents can be a reason for the generation of IOD and the asymmetry of the amplitude of the dipole mode index between positive and negative events. During the extremely intense ENSO event of 1997–1998, which was accompanied by the strong IOD event, the critical layer in the equatorial–tropical zone of the Indian Ocean was absent. This ENSO event generated the oceanic planetary waves at the eastern edge of the Indian Ocean. Therefore, it is shown that the above mechanism of the ENSO–IOD interaction is a reality.


2021 ◽  
pp. 1-47

Abstract This study utilises observations and a series of idealised experiments to explore whether Eastern Pacific (EP) and Central Pacific (CP) type El Niño-Southern Oscillation (ENSO) events produce surface wind stress responses with distinct spatial structures. We find that the meridionally broader sea surface temperatures (SST) during CP events lead to zonal wind stresses that are also meridionally broader than those found during EP type events, leading to differences in the near-equatorial wind stress curl. These wind spatial structure differences create differences in the associated pre- and post-ENSO event WWV response. For instance, the meridionally narrow winds found during EP events have: i) weaker wind stresses along 5°N and 5°S, leading to weaker Ekman induced pre-event WWV changes; and ii) stronger near-equatorial wind stress curls that lead to a much larger post-ENSO event WWV changes than during CP events. The latter suggests that, in the framework of the recharge oscillator model, the EP events have stronger coupling between sea surface temperatures (SST) and thermocline (WWV), supporting more clearly the phase transition of ENSO events, and therefore the oscillating nature of ENSO than CP events. The results suggest that the spatial structure of the SST pattern and the related differences in the wind stress curl, are required along with equatorial wind stress to accurately model the WWV changes during EP and CP type ENSO events.


2021 ◽  
Vol 893 (1) ◽  
pp. 012008
Author(s):  
D Fatmasari

Abstract Hadley Cells are thermally driven cell in the tropics. On its occurrence, these cells are strongly influenced by the sea surface temperature (SST) distribution across the tropical ocean or the Pacific Ocean as the investigated location in this study. The SST shifting in the Pacific Ocean is mainly due to the ENSO. An opposite SST polarity between the western and eastern Pacific Ocean are captured during ENSO events. This means that ENSO could trigger an anomalous regional Hadley Cells that behave oppositely between Indonesia or the western Pacific and the eastern Pacific. This study examines the strength of the regional Hadley Cells related to the ENSO event across the Indonesian region and the Pacific Ocean. A significant correlation between the Hadley Cells and ENSO as the tropical climate variability in the Pacific Oceans are found. The strength of the Hadley Cells associated with ENSO event is examined by using the zonally average vertical velocity across the Pacific Ocean. During La Nina, the regional Hadley Cells over Indonesia or the western Pacific strengthened, whereas the regional cells over the eastern Pacific weakened. In contrast, during El Nino where the warm pool shifted to the eastern Pacific, the regional cell in the eastern Pacific strengthened, while the cell over the western Pacific weakened. These anomalous conditions clearly show that the meridional temperature gradient is strongly affecting the regional Hadley Cells strength. The stronger the meridional temperature gradient, the stronger the regional Hadley Cells.


2021 ◽  
Vol 2 (9) ◽  
pp. 870-875
Author(s):  
Ricardo Oses Rodriguez ◽  
Rigoberto Fimia Duarte ◽  
Alfredo Gonzalez Meneses

The objective of this work is to model the variable number of cold fronts that affect the Cuban territory in a winter season for a long series of data, to establish if the trend is significant and to see which are the main statistics of the model, to observe the impact of prediction using the number of sunspots with the help of Objective Regressive ROR modeling. In this work, the series of cold fronts per season that affect the Cuban territory was modeled in the years from the 1916-1917 seasons to the 2006-2007 seasons. There are more moderate cold fronts than any other front, on average there are more classic fronts than any other type, on average 19 fronts can be presented per season with a standard deviation of 4.8 Sunspots and they only have a significant linear correlation with sunspots. In moderate fronts, as the stains increase, the number of fronts decreases. The ROR model explains 98% of the variance with an error of 4.2 cases and depends on the fronts returned in 5 seasons, which could coincide with the ENSO event, and also depends on the number of sunspots returned in 12 years. From 1916-1917 approximately the 1952-1953 season, moderate fronts predominated, later from 1953-1954 to the end of the data, weak fronts predominate over the rest with some exceptions throughout history. No significant trend was observed in the model. It is concluded that forecasts of the number of cold fronts can be made with the variable number of sunspots.


Climate ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 57
Author(s):  
Yusuf Jati Wijaya ◽  
Yukiharu Hisaki

The North Equatorial Countercurrent (NECC) is an eastward zonal current closely related to an El Niño Southern Oscillation (ENSO) event. This paper investigated the variations of NECC in the Western Pacific Ocean over 25 years (1993–2017) using satellite data provided by the Copernicus Marine Environment Monitoring Service (CMEMS) and the Remote Sensing System (RSS). The first mode of empirical orthogonal function (EOF) analysis showed that the NECC strengthened or weakened in each El Niño (La Niña) event during the developing or mature phase, respectively. We also found that the NECC shifting was strongly coincidental with an ENSO event. During the developing phase of an El Niño (La Niña) event, the NECC shifted southward (northward), and afterward, when it entered the mature phase, the NECC tended to shift slightly northward (southward). Moreover, the NECC strength was found to have undergone a weakening during the 2008–2017 period.


2021 ◽  
Author(s):  
Oscar Clement Kambombe ◽  
Cosmo Ngongondo ◽  
Levis Eneya ◽  
Maurice Monjerezi ◽  
Clement Boyce

Abstract Drought phenomena are attributed to water availability deficit that is caused by low precipitation. However, droughts are quite complex and cannot simply be defined on the basis of precipitation as other factors may have an influence. In this study, we investigated the spatio-temporal patterns of droughts in Lake Chilwa Basin, an endorheic lake basin that has recently experienced major recurrent lake recessions. The standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) at six- and twelve-month timescales were used to evaluate drought severity variations from 1970 to 2018, in relation to the recessions. The stationarity difference in rainfall between 1973 to 1995 and 1996 to 2018 and climatological trends were tested using Mann-Whitney and Mann-Kendall tests, respectively. The El Niño Southern Oscilation (ENSO) influence on rainfall was also investigated. In general, the results show a statistically insignificant decreasing rainfall trend, coupled with statistically significant temperature increase (a=0.05). In addition, both indices broadly detected droughts within similar category ranges and variation patterns, suggesting minimal influence of temperature on droughts compared to rainfall. The study also reveals that not every ENSO event leads to low rainfall in the basin. It is further shown that unlike past major recessions e.g., 1994/95, recent lake dry-ups of 2012 and 2015 were as a result of milder droughts. Moreover, the trigger threshold of lake dry-ups is shown to have shifted; such that average annual rainfall below 1000mm is likely to yield a dry-up in recent times than before, which may be attributable to anthropogenic pressure.


2021 ◽  
Author(s):  
Ibeth Celia Rojas Macedo ◽  
Wilson Alfredo Suarez Alayza ◽  
Edwin Anibal Loarte Cadenas ◽  
Katy Damacia Medina Marcos

<p>This research aims to explain the influence of climatic variables (temperature and precipitation) in King George Island (KGI) glacier shrinkage on the Antarctic Peninsula. It employed Landsat satellite images from 1989 to 2020, climatic data and ONI index from 1980 to 2019.</p><p>King George Island glaciers have lost 10% of their coverage in the last 31 years. Greater glacier shrinkage was shown until the first mid-period assessed, while the retreat rate slowed down for the second half of the studied period. Furthermore, of 73 KGI glaciers, 37% were marine- and land-terminating, 42% were land-terminating and 21% were sea-terminating. Nonetheless, the decreases in the ice-coverage of marine-contact glaciers (35% of glacier coverage reduced) were higher than land-terminating glaciers (17% of glacier coverage reduced).</p><p>There was a perceivable fluctuation in annual average air temperature for the 1980-2006 period. Nevertheless, from around 2007 to 2015/2016 there was a slight continuous cooling period and precipitation was somewhat above the average. Therefore, these patterns could explain the recent KGI glacier-retreat deceleration.</p><p>Unlike the 1982/1983 and 1997/1998 El Niño events, the 2015/2016 El Niño was colder with precipitation reduction from the sustained annual amount (since roughly 2007 to 2015/2016) to values below the average. Moreover, during the 2015/2016 El Niño, KGI glacier coverage reduction was the lowest for the 31 year-long evaluated. However, it was revealed that the glacier's height could increase by accumulation in El Niño years, but glacier mass balance could be more negative due to basal melting. Additionally, land-terminating glaciers have lost more glacier coverage than sea-terminating glaciers throughout this ENSO event.</p><p>Hence, climate variability might play a significant role in KGI glacier shrinkage, but calving process, glacier features and so on, further a combination of them should be assessed to reach a better understanding of KGI glacier retreat.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 240
Author(s):  
Rayonil Carneiro ◽  
Gilberto Fisch ◽  
Theomar Neves ◽  
Rosa Santos ◽  
Carlos Santos ◽  
...  

This study investigated the erosion of the nocturnal boundary layer (NBL) over the central Amazon using a high-resolution model of large-eddy simulation (LES) named PArallel Les Model (PALM) and observational data from Green Ocean Amazon (GoAmazon) project 2014/5. This data set was collected during four intense observation periods (IOPs) in the dry and rainy seasons in the years 2014 (considered a typical year) and 2015, during which an El Niño–Southern Oscillation (ENSO) event predominated and provoked an intense dry season. The outputs from the PALM simulations represented reasonably well the NBL erosion, and the results showed that it has different characteristics between the seasons. During the rainy season, the IOPs exhibited slow surface heating and less intense convection, which resulted in a longer erosion period, typically about 3 h after sunrise (that occurs at 06:00 local time). In contrast, dry IOPs showed more intensive surface warming with stronger convection, resulting in faster NBL erosion, about 2 h after sunrise. A conceptual model was derived to investigate the complete erosion during sunrise hours when there is a very shallow mixed layer formed close to the surface and a stable layer above. The kinematic heat flux for heating this layer during the erosion period showed that for the rainy season, the energy emitted from the surface and the entrainment was not enough to fully heat the NBL layer and erode it. Approximately 30% of additional energy was used in the system, which could come from the release of energy from biomass. The dry period of 2014 showed stronger heating, but it was also not enough, requiring approximately 6% of additional energy. However, for the 2015 dry period, which was under the influence of the ENSO event, it was shown that the released surface fluxes were sufficient to fully heat the layer. The erosion time of the NBL probably influenced the development of the convective boundary layer (CBL), wherein greater vertical development was observed in the dry season IOPs (~1500 m), while the rainy season IOPs had a shallower layer (~1200 m).


2021 ◽  
Vol 34 (3) ◽  
pp. 1047-1060
Author(s):  
Manish K. Joshi ◽  
Muhammad Adnan Abid ◽  
Fred Kucharski

AbstractIn this study the role of an Indian Ocean heating dipole anomaly in the transition of the North Atlantic–European (NAE) circulation response to El Niño–Southern Oscillation (ENSO) from early to late winter is analyzed using a twentieth-century reanalysis and simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). It is shown that in early winter a warm (cold) ENSO event is connected through an atmospheric bridge with positive (negative) rainfall anomalies in the western Indian Ocean and negative (positive) anomalies in the eastern Indian Ocean. The early winter heating dipole, forced by a warm (cold) ENSO event, can set up a wave train emanating from the subtropical South Asian jet region that reaches the North Atlantic and leads to a response that spatially projects onto the positive (negative) phase of the North Atlantic Oscillation. The Indian Ocean heating dipole is partly forced as an atmospheric teleconnection by ENSO, but can also exist independently and is not strongly related to local Indian Ocean sea surface temperature (SST) forcing. The Indian Ocean heating dipole response to ENSO is much weaker in late winter (i.e., February and March) and not able to force significant signals in the North Atlantic region. CMIP5 multimodel ensemble reproduces the early winter Indian Ocean heating dipole response to ENSO and its transition in the North Atlantic region to some extent, but with weaker amplitude. Generally, models that have a strong early winter ENSO response in the subtropical South Asian jet region along with tropical Indian Ocean heating dipole also reproduce the North Atlantic response.


Sign in / Sign up

Export Citation Format

Share Document