hydrophobic molecule
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 21)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Peichao Zou ◽  
Dmytro Nykypanchuk ◽  
Gregory Doerk ◽  
Huolin L. Xin
Keyword(s):  

2021 ◽  
Vol 5 (4) ◽  
pp. 50
Author(s):  
Laura Fernández-Peña ◽  
Boutaina Z. El Mojahid ◽  
Eduardo Guzmán ◽  
Francisco Ortega ◽  
Ramón G. Rubio

This work analyzes the dispersion of a highly hydrophobic molecule, (9Z)-N-(1,3-dihydroxyoctadecan-2-yl)octadec-9-enamide (ceramide-like molecule), with cosmetic and pharmaceutical interest, by exploiting oil-in-water microemulsions. Two different oils, oleic acid and soybean oil, were tested as an oil phase while mixtures of laureth-5-carboxylic acid (Akypo) and 2-propanol were used for the stabilization of the dispersions. This allowed us to obtain stable aqueous-based formulations with a relatively reduced content of oily phase (around 3% w/w), that may enhance the bioavailability of this molecule by its solubilization in nanometric oil droplets (with a size range of 30–80 nm), that allow the incorporation of a ceramide-like molecule of up to 3% w/w, to remain stable for more than a year. The nanometric size of the droplet containing the active ingredient and the stability of the formulations provide the basis for evaluating the efficiency of microemulsions in preparing formulations to enhance the distribution and availability of ceramide-like molecules, helping to reach targets in cosmetic and pharmaceutical formulations.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5995
Author(s):  
Hallysson Douglas Andrade de Araújo ◽  
Hianna Arely Milca Fagundes Silva ◽  
José Guedes da Silva Júnior ◽  
Mônica Camelo Pessoa de Azevedo Albuquerque ◽  
Luana Cassandra Breitenbach Barroso Coelho ◽  
...  

Usnic acid is the best-studied lichen metabolite, presenting several biological activities, such as antibacterial, immunostimulating, antiviral, antifungal, anti-inflammatory, and antiparasitic agents; despite these relevant properties, it is a hydrophobic and toxic molecule. In this context, scientific research has driven the development of innovative alternatives, considering usnic acid as a source of raw material in obtaining new molecules, allowing structural modifications (syntheses) from it. The purpose is to optimize biological activities and toxicity, with less concentration and/or response time. This work presents a literature review with an analogy of the hydrophobic molecule of usnic acid with its hydrophilic derivative of potassium usnate, emphasizing the elucidation and structural characteristics, biological activities, and toxicological aspects of both molecules, and the advantages of using the promising derivative hydrophilic in different in vitro and in vivo assays when compared to usnic acid.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3240
Author(s):  
Tar-Hwa Hsieh ◽  
Lin-Chia Ho ◽  
Yen-Zen Wang ◽  
Ko-Shan Ho ◽  
Cheng-Hsien Tsai ◽  
...  

The hydrophilic initiator potassium persulfate (KPS) was converted into a hydrophobic molecule by complexing with cetyltrimethylammonium bromide (CTAB) at both ends of the molecule (CTAPSu). Inverse emulsion polymerization thus proceeded inside micelles dispersed in the affluent toluene with CTAPSu as the initiator. Polyaniline (PANI) formed inside the micelles and entangled with Fe3O4 nanoparticles already esterified with oleic acid (OA). Iron composites consisted of OA-esterified Fe3O4 nanoparticles covered with PANI after de-emulsification. After calcination at 950 °C in an argon atmosphere, the resultant iron compound was a mixture of α-Fe (ferrite) and Fe3C (cementite), as determined by X-ray diffraction. Eventually, the calcined iron compounds (mixtures) demonstrated superparamagnetic properties with a high saturation magnetization (Ms) of 197 emu/g, which decayed to 160 emu/g after exposure to the atmosphere for four months.


Author(s):  
Evan Craig ◽  
Anna Calarco ◽  
Raffaele Conte ◽  
Veronica Ambrogi ◽  
Giovanna Gomez d’Ayala ◽  
...  

Clinical manifestations of leishmaniasis range from self-healing, cutaneous lesions to fatal infections of the viscera. With no preventative Leishmania vaccine available, the frontline option against leishmaniasis is chemotherapy. Unfortunately, currently available anti-Leishmania drugs face several obstacles, including toxicity that limits dosing and emergent drug resistant strains in endemic regions. It is, therefore, imperative that more effective drug formulations with decreased toxicity profiles are developed. Previous studies had shown that 2-(((5-Methyl-2-thienyl)methylene)amino)-N-phenylbenzamide (also called Retro-2) has efficacy against Leishmania infections. Structure–activity relationship (SAR) analogs of Retro-2, using the dihydroquinazolinone (DHQZ) base structure, were subsequently described that are more efficacious than Retro-2. However, considering the hydrophobic nature of these compounds that limits their solubility and uptake, the current studies were initiated to determine whether the solubility of Retro-2 and its SAR analogs could be enhanced through encapsulation in amphiphilic polymer nanoparticles. We evaluated encapsulation of these compounds in the amphiphilic, thermoresponsive oligo(ethylene glycol) methacrylate-co-pentafluorostyrene (PFG30) copolymer that forms nanoparticle aggregates upon heating past temperatures of 30°C. The hydrophobic tracer, coumarin 6, was used to evaluate uptake of a hydrophobic molecule into PFG30 aggregates. Mass spectrometry analysis showed considerably greater delivery of encapsulated DHQZ analogs into infected cells and more rapid shrinkage of L. amazonensis communal vacuoles. Moreover, encapsulation in PFG30 augmented the efficacy of Retro-2 and its SAR analogs to clear both L. amazonensis and L. donovani infections. These studies demonstrate that encapsulation of compounds in PFG30 is a viable approach to dramatically increase bioavailability and efficacy of anti-Leishmania compounds.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1734
Author(s):  
Betty Chaumet ◽  
Jean-Luc Probst ◽  
Pierre Eon ◽  
Thierry Camboulive ◽  
David Riboul ◽  
...  

In agricultural areas, ponds are suitable wetland environments to dissipate and reduce the occurrence of pesticides in aquatic environments. However, their impact at a catchment scale is still poorly understood. This study aims to determine how these organic contaminants were trapped in a pond located in an agricultural critical zone from SW France (Auradé catchment). The spatial distribution of pesticide concentrations and their different controlling factors were investigated in waters and sediments collected during two distinct seasons. The results highlighted (i) the link between the presence of the molecules and the agricultural practices upstream, (ii) the influence of hydrological/seasonal conditions, especially on hydrophobic molecule accumulation such as tebuconazole, (iii) the key role of clay content in sediments on the control of moderately hydrophilic pesticides (metolachlor and boscalid), but also the unexpected role of coarse particles for boscalid; and (iv) the influence of sediment depth on pesticide storage. Nevertheless, other physico-chemical parameters, such as mineralogical composition of sediment, needed to be considered to explain the pesticide patterns. This study brings a new hypothesis to be investigated in the future about pesticide behaviour in such pond environments.


2021 ◽  
Vol 22 (9) ◽  
pp. 4533
Author(s):  
Tomoyuki Koga ◽  
Shinya Kingetsu ◽  
Nobuyuki Higashi

Self-assembly of artificial peptides has been widely studied for constructing nanostructured materials, with numerous potential applications in the nanobiotechnology field. Herein, we report the synthesis and hierarchical self-assembly of collagen-mimetic peptides (CMPs) bearing various aromatic groups at the N-termini, including 2-naphthyl, 1-naphtyl, anthracenyl, and pyrenyl groups, into nanofibers. The CMPs (R-(GPO)n: n > 4) formed a triple helix structure in water at 4 °C, as confirmed via CD analyses, and their conformations were more stable with increasing hydrophobicity of the terminal aromatic group and peptide chain length. The resulting pre-organized triple helical CMPs showed diverse self-assembly into highly ordered nanofibers, reflecting their slight differences in hydrophobic/hydrophilic balance and configuration of aromatic templates. TEM analysis demonstrated that 2Np-CMPn (n = 6 and 7) and Py-CMP6 provided well-developed natural collagen-like nanofibers and An-CMPn (n = 5–7) self-assembled into rod-like micelle fibers. On the other hand, 2Np-CMP5 and 1Np-CMP6 were unable to form nanofibers under the same conditions. Furthermore, the Py-CMP6 nanofiber was found to encapsulate a guest hydrophobic molecule, Nile red, and exhibited unique emission behavior based on the specific nanostructure. In addition to the ability of CMPs to bind small molecules, their controlled self-assembly enables their versatile utilization in drug delivery and wavelength-conversion nanomaterials.


2021 ◽  
Vol 12 ◽  
Author(s):  
Julia S. Steinhoff ◽  
Achim Lass ◽  
Michael Schupp

Retinol binding protein 4 (RBP4) is a member of the lipocalin family and the major transport protein of the hydrophobic molecule retinol, also known as vitamin A, in the circulation. Expression of RBP4 is highest in the liver, where most of the body’s vitamin A reserves are stored as retinyl esters. For the mobilization of vitamin A from the liver, retinyl esters are hydrolyzed to retinol, which then binds to RBP4 in the hepatocyte. After associating with transthyretin (TTR), the retinol/RBP4/TTR complex is released into the bloodstream and delivers retinol to tissues via binding to specific membrane receptors. So far, two distinct RBP4 receptors have been identified that mediate the uptake of retinol across the cell membrane and, under specific conditions, bi-directional retinol transport. Although most of RBP4’s actions depend on its role in retinoid homeostasis, functions independent of retinol transport have been described. In this review, we summarize and discuss the recent findings on the structure, regulation, and functions of RBP4 and lay out the biological relevance of this lipocalin for human diseases.


Sign in / Sign up

Export Citation Format

Share Document