tectonic zones
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 29)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 906 (1) ◽  
pp. 012039
Author(s):  
Evgeny Solovyov ◽  
Valery Fridovsky ◽  
Denis Savvin ◽  
Vadim Kychkin

Abstract The results of geophysical studies of the junction area of the Adycha-Elga and Allakh-Yun tectonic zones of the Verkhoyansk fold-and-thrust belt located on the submerged eastern margin of the Siberian craton are presented. Three structural-mineral complexes are recognized: Archean-Paleoproterozoic, Mesoproterozoic-Middle Carboniferous, and Upper Carboniferous-Early Mesozoic. The Early Jurassic plume-related basaltic volcanism and suprasubduction Late Jurassic-Early Cretaceous granitoids, regional Brungadin and Suntar faults are identified. The goal of the research is to identify deep heterogeneities and clarify the structure of the Earth’s crust in the junction area of the Adycha-Elga and Allakh-Yun tectonic zones of the Verkhoyansk fold-and-thrust belt. The analysis of gravitational anomalies is carried out, their transformations are performed – distinguishing the medium and low-frequency components, the vertical derivative Vzz, and calculating the equivalent distribution of sources of density masses at depth. It is determined that the hidden granitoids of the Adycha-Elga tectonic zone are located mainly in linear zones of decompaction at a depth of about 3.5 km. In the Allakh-Yun zone, a large gravitational minimum has been identified, where it is assumed that there is a magma granitoid chamber occurring at a depth of about 9 km. The model of the deep structure of the territory is based on the analysis of materials on the reference seismic profile 3-DV with the use of gravimetric data and the regional structure of the territory. According to the results of the wave pattern interpretation, the thickness of the lithosphere varies from 41 to 44 km. The thickness of the Upper Carboniferous-Triassic terrigenous rocks is 8-12 km, Mesoproterozoic - Middle Carboniferous carbonate-terrigenous complex is up to 12 km. The Archean-Paleoproterozoic crystalline basement occurs at a depth of 19-21 km. The Conrad discontinuity is assumed at a depth of about 30 km. Intense deformations of the crystalline basement are recognized, and trans-crust faults are identified.


2021 ◽  
Vol 5 (5) ◽  
pp. 14-21
Author(s):  
Mingchang Hei ◽  
Xuegang Dai ◽  
Xukai Yuan ◽  
Jia Xiong ◽  
Xiaobo Kang

study area is located at the southwest border of Yunnan Province and the southward extended part of Nushan Mountain, with complex and fragile geo-environmental conditions. Deep geological survey and mathematical analytical investigation on the geohazard distribution and hazard-causing mechanisms in this area were carried out in this study. The results revealed that: (1) The development of geohazards was affected differently by different slope shapes, slope structures and elevations; (2) Most of the geohazards were developed in medium shallow cut ridge-like medium-height mountainous geomorphological region and shallow cut steamed bun-like low and medium-height mountainous geomorphological region, and they were relatively concentrated on tectonic zones like fault zones; (3) The slopes formed by loose earth piling up on the surface of Indo-Chinese magmatic rock and Lancang Group metamorphic rock formations were most prone to slope instability and even landslide. The deep study on the geohazard distribution and hazard-causing mechanisms can provide geoscientific basis and reference for the prevention and mitigation work of geohazards under similar geo-environmental conditions.


Author(s):  
T. Dhansay

Abstract The delicate interplay of various Earth’s systems processes in the Critical Zone is vital in ensuring an equilibrium across the different spheres of life. The upper crust forms a thin veneer on the Earth’s surface that is defined by an interconnected network of brittle structures. These brittle structures enable various Earth System processes. Increased anthropogenic interactions within the very upper crust have seemingly resulted in a growing number of negative natural effects, including induced seismicity, mine water drainage and land degradation. Brittle structures across South Africa are investigated. These structures include various fractures and dykes of different ages and geodynamic evolutions. The orientation of these structures is compared to the underlying tectonic domains and their bounding suture zones. The orientations corroborate an apparent link between the formation of the brittle structures and the tectonic evolution of the southern African crust. Reactivation and the creation of new structures are also apparent. These are linked to the variability of the surrounding stress field and are shown to have promoted magmatism, e.g., Large Igneous Provinces, and the movement of hydrothermal fluids. These fluids were commonly responsible for the formation of important mineral deposits. The preferred structural orientations and their relationship to underlying tectonic zones are also linked to fractured groundwater aquifers. Subsurface groundwater displays a link to structural orientations. This comparison is extended to surficial water movement. Surface water movement also highlights an apparent link to brittle structures. The apparent correlation between these Earth’s systems processes and the interconnectivity developed by brittle structures are clear. This highlights the importance of high-resolution geological and structural mapping and linking this to further development of the Earth’s Critical Zone.


2021 ◽  
Vol 2 (3) ◽  
pp. 10-15
Author(s):  
Kristina Y. Tulisova ◽  
Tatyana A. Kuleshova ◽  
Alexey M. Yannikov ◽  
Nataliya V. Yurkevich

The article presents the results of a flow-through experiment simulating the process of dissolution of soils of the foundation of a dam of a hydraulic structure by groundwater. The object of the study is the tailing dump of the concentrating plant, during the operation of which the permafrost soils of the coastal abutments of the enclosing dam thawed, significant volumes of circulating water leaked into the shunting tank located below. The development of filtration channels in fractured tectonic zones that make up the near-rock massif does not stop. Upon completion of the experiment, which lasted 20 weeks, an array of measured parameters of solutions at the exit from the columns was obtained: pH, specific conductivity and elemental composition. The data obtained made it possible to estimate the rate of dissolution of the soils of the dam foundation.


Author(s):  
Khabibkhon Sadirovich Khodjaev ◽  
Keyword(s):  

This article is devoted to analyzes the issues of mineral and geochemical features of mineralized zones: eastern Jamansai section (Sultan-Vvais ridge). Productive mineralization of the eastern Jamansai site is associated with metamorphogenic transformations of rocks of the Sultanuvai, Jamansai, Beshmazar, Kazansai formations, metamorphosed under the conditions of the green-shale facies. Mineralized zones of the site are confined to narrow faults in tectonic zones of the northeastern and northwestern directions.


LITOSFERA ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 273-282
Author(s):  
S. G. Sustavov ◽  
V. A. Dushin ◽  
I. A. Vlasov ◽  
A. K. Trutnev ◽  
E. A. Zhuklin ◽  
...  

Research subject. The article examines exotic mineral formations - spherules (balls) of various composition and structure, found in the Neogene sediments of the interfluve of the Put-Bisert rivers within the eastern wing of the Yurizan-Sylva de-pression.Materials and methods. The work was carried out using the authors' research results, the available data on similar formations both from the modern soil-vegetation layer, including peat and technogenic formations, and from more ancient Phanerozoic sedimentary, magmatic and ore complexes. The article uses the results of studies obtained by a scanning electron microscope “EVO MA 15” from ZEISS with an energy-dispersive attachment EDS “X-MAX 80” at the JSC “Mekhanobr” analytical laboratory.Results. A detailed study of the surface morphology, dimensions, chemical and mineral composition of three types of spherules - magnetite, iron-chromium composition and barium and titanium oxide, similar to the stoichiometric formula of sanbornite - was carried out. The surface of the balls of the second type is heterogeneous in structure and contains growths, some of which have the form of a flat, flattened, square, skeletal crystal of a sectorial structure. The inner surface of the crystal has a fine-mesh structure. The cells have a complex, elongated structure. At the periphery of the crystal, the cells transform into hollow channels, indicating growth from the gas phase. In composition, the sectoral crystal corresponds to a solid solution between magnesio-chromite and herzenite with an admixture of nickel, calcium and silicon. The internal microstructure of iron-chromium spherules has a myrmekite, two-phase structure.Conclusions. The obtained data indicate that such heterogeneous formations can be formed only in specific deep fluid-saturated high-temperature magmatic systems and delivered to the surface by hydrothermal fluids along weakened tectonic zones. The detection of these formations in the overlying sediments of the western wing of the Artinskaya anticline may indicate the proximity of large fluid-supplying deep structures that control the Bukharovskoye gas show.


2021 ◽  
Author(s):  
Dražen Balen ◽  
Petra Schneider

<p>The Mt. Medvednica is located north of Zagreb, a capital of Croatia, reaching 1033 m in height. It belongs to a complex geological unit located in the border area between Alps, Tisia (crystalline basement of the Pannonian Basin) and Dinarides, that are separated with large and regionally significant tectonic zones. Such geological position inevitably resulted with preservation of characteristics inherited from those large tectonic units, as well as those related to the local scale geological processes. Despite the significant tectonism, the Cretaceous metamorphism of Mt. Medvednica did not exceed P-T conditions of a low-grade metamorphism, as a typical metamorphic rock present is greenschist originated from the mafic igneous rock protolith.</p><p>The investigated Mt. Medvednica greenschists are characterized with weak schistosity, granoblastic to granolepidoblastic texture and typically comprise chlorite (40 vol.%), albite (35 vol.%), opaques (up to 15 vol.%), epidote (5 vol.%) and quartz (5 vol.%) that do not exceed 0.5 mm in size, with accessory minerals like titanite, apatite, zircon and calcite, together with rare finding of pumpellyite. The pumpellyite was so far just sporadically reported in the greenschists and was not investigated in detail. On the contrary, pumpellyite was almost regularly reported in the basic rocks from Jurassic ophiolite mélange that tectonically overly greenschists. Pumpellyite can be found there as a secondary hydrous silicate occurring in the altered extrusive rocks that undergone low-temperature ocean floor hydrothermal metasomatism addressed to the ophiolite emplacement.</p><p>Since blasts of pumpellyite (ca. 0.2‒0.3 mm in size) that we have found in the greenschists are possible indicators for a polyphase metamorphic evolution, we have conducted microtextural analyses combined with a phase equilibrium modeling approach through the construction of P-T pseudosections. Chemical composition of greenschists suggested an origin from the altered calc-alkaline basalt. Therefore, P-T pseudosections in the range of 100‒1000 MPa and 250‒450 °C were constructed with PERPLEX software in the complex MnNCKFMASHTO chemical system, and contoured by isopleths for the mode and chemical composition of major rock-forming minerals.</p><p>Pumpellyite chemistry is characterized with SiO<sub>2</sub>=36.77‒38.38 wt.%, Al<sub>2</sub>O<sub>3</sub>=18.56‒21.00 wt.%, CaO=20.69‒22.89 wt.% and FeO=14.50‒16.85 wt.% that classify this mineral as a pumpellyite-(Fe<sup>2+</sup>). Metamorphic P-T conditions for pumpellyite-(Fe<sup>2+</sup>) blasts in the assemblage with chlorite and albite were modeled to 500 MPa and 270°C. Those values correspond well with the theoretically expected values, as well as with previously obtained peak P-T values for greenschist metamorphism of Mt. Medvednica obtained on the metapelites and metabasites with aid of a classical geothermobarometry. For comparison, different pumpellyite chemistry and slightly higher P-T values obtained in this research with pressures (up to +300 MPa) and temperatures (approx. +40°C) point to metamorphic mineral different from pumpellyite related to Jurassic ophiolite mélange altered basic rocks. Microtextural relations between major mineral assemblage and assemblage with pumpellyite show that prograde part of Cretaceous metamorphism, as a consequence of closure of the Neo-Tethys oceanic crust, preceded the growth of pumpellyite that may be ascribed to the retrograde part of a clockwise P-T path.</p>


2021 ◽  
Author(s):  
Stefano C. Fabbri ◽  
Valentin Nigg ◽  
Benjamin Bellwald ◽  
Katrina Kremer ◽  
Flavio S. Anselmetti

<p>Tsunamigenic delta collapses in lacustrine environments are still poorly understood phenomena in terms of their recurrence rate, driving mechanism and hazard potential. A partial collapse of the Isola Delta in Lake Sils (Engadine, Switzerland) with an estimated depositional volume of at least 6.5 million m<sup>3</sup> is radiocarbon-dated to 548-797 cal CE and may represent a typical tsunamigenic delta collapse in the Alpine environment. Recent studies propose that this basin-wide tsunami with a run-up height of 2–3 m and an inundation distance of 200 m at the lakeshore highlights the importance to better understand these processes and the associated hazards. The collapse was likely triggered by a strong regional earthquake responsible for several simultaneously triggered mass movements in nearby Lake Silvaplana and Lake Como. Increasingly available datasets from Lake Sils (short cores, high-resolution seismic reflection data, numerical tsunami simulations) are now complemented by multibeam swath bathymetry, providing a high-resolution (1 m grid) model of the lake floor that offers new insights into the failed slope masses, and post-failure basin morphology.</p><p>Lake Sils is located in the Upper Engadine in southeastern Switzerland at ~1800 m above sea level and has four major sub-basins (Maloja, Central, Sils & Lagrev Basins). A major tectonic element is the Engadine Fault Line (EFL), an oblique sinistral strike-slip fault that runs along the entire Upper Engadine valley. Its influence on the subaqueous morphology of the Maloja Basin in Lake Sils is expressed in the form of several localized troughs and ridges. It is suspected that the fault also cross-cuts the Isola Delta, possibly causing renewed delta failures in case of reactivation. In fact, recent studies have indicated that there is strong evidence for Quaternary left-lateral transcurrent faulting of the EFL, e.g. offsetting a river gully in the Forno Valley close to Lake Sils.</p><p>New bathymetric data from Lake Sils and their morphologic interpretations indicate subaquaeous slope failures, the extent of the Isola Delta collapse, and several trough-ridge features within the southwestern Maloja Basin. The latter are possibly indicative of ongoing faulting in the region since such features strongly suggest rhomboidal pull-apart basins within the Maloja Basin along the EFL. In general, such localized troughs within a lacustrine system are expected to level-out over time due to higher sedimentation rates in preferentially deeper regions of the lake. This study thus highlights the use of high-resolution bathymetric data in identifying the combined effects of deep-seated tectonic zones with shallow lake-floor processes, providing new insights into lacustrine hazard studies.</p>


Geotectonics ◽  
2021 ◽  
Vol 55 (2) ◽  
pp. 250-260
Author(s):  
V. K. Sissakian ◽  
N. Al-Ansari ◽  
A. D. Abdulahad
Keyword(s):  

2021 ◽  
Vol 1-2 (183-184) ◽  
pp. 14-44
Author(s):  
Myroslav Pavlyuk ◽  
Yaroslav Lazaruk ◽  
Volodymyr Shlapinsky ◽  
Olesya Savchak ◽  
Ivanna Kolodiy ◽  
...  

In the paper we have analysed hydrocarbon deposits of the Western region according to their belonging to the tectonic zones, stratigraphic complexes, types and depths of occurrence. The law-governed nature of alteration in physical-chemical properties of oil and gas, hydrogeological and geochemical peculiarities of productive thickness were studied, haloes of the distribution of gas of hydrocarbon and non-hydrocarbon composition outcrops of fluids were mapped. Problems of the formation of hydrocarbon accumulations were considered. According to the results of integrated analysis of different geological factors, besides the main factors of oil and gas presence – structure, reservoir, cover – additional criteria were proposed. In the direction to the deposit, the nitric-methane gases are changed into sufficiently methane and hydrocarbon-methane ones, and values of saturation pressure are comparable to the formation pressure. Indication of oil-gas presence are water-soluble organic matters of oil origin: bitumen, phenols, hydrocarbons, naphthenic acids as well as the presence of condensation waters or their mixture with formational waters. Probable indicators of hydrocarbon accumulations are sulfides of zinc, lead, copper in rocks. For the existence of the deposits the hydrogeological closing of the bowels is necessary: small velocities of the formational waters, their high mineralization, metamorphism intensity, chlorine-calcium type of waters. Natural oil-gas showings as a reflection of deposits that occur at a depth serve as criterion for estimation of prospects of the oil-gas presence in the open territories. The example of substation of prospecting objects is given according to criteria of the oil-gas presence in the platform autochthone under the overthrust of Pokuttia-Bukovyna Carpathians.


Sign in / Sign up

Export Citation Format

Share Document