quantum mechanical study
Recently Published Documents


TOTAL DOCUMENTS

672
(FIVE YEARS 54)

H-INDEX

49
(FIVE YEARS 3)

2021 ◽  
Vol 7 (10) ◽  
pp. 137 ◽  
Author(s):  
Martin Friák ◽  
Josef Gracias ◽  
Jana Pavlů ◽  
Mojmír Šob

In this study, we performed a quantum mechanical examination of thermodynamic, structural, elastic, and magnetic properties of single-phase ferromagnetic Fe2CoAl with a chemically disordered B2-type lattice with and without antiphase boundaries (APBs) with (001) crystallographic orientation. Fe2CoAl was modeled using two different 54-atom supercells with atoms on the two B2 sublattices distributed according to the special quasi-random structure (SQS) concept. Both computational models exhibited very similar formation energies (−0.243 and −0.244 eV/atom), B2 structure lattice parameters (2.849 and 2.850 Å), magnetic moments (1.266 and 1.274 μB/atom), practically identical single-crystal elastic constants (C11 = 245 GPa, C12 = 141 GPa, and similar C44 = 132 GPa) and auxetic properties (the lowest Poisson ratio close to −0.1). The averaged APB interface energies were observed to be 199 and 310 mJ/m2 for the two models. The studied APBs increased the total magnetic moment by 6 and 8% due to a volumetric increase as well as local changes in the coordination of Fe atoms (their magnetic moments are reduced for increasing number of Al neighbors but increased by the presence of Co). The APBs also enhanced the auxetic properties.


2021 ◽  
Vol 7 (8) ◽  
pp. 108
Author(s):  
Martin Friák ◽  
Miroslav Černý ◽  
Mojmír Šob

We performed a quantum mechanical study of segregation of Cu atoms toward antiphase boundaries (APBs) in Fe3Al. The computed concentration of Cu atoms was 3.125 at %. The APBs have been characterized by a shift of the lattice along the ⟨001⟩ crystallographic direction. The APB energy turns out to be lower for Cu atoms located directly at the APB interfaces and we found that it is equal to 84 mJ/m2. Both Cu atoms (as point defects) and APBs (as extended defects) have their specific impact on local magnetic moments of Fe atoms (mostly reduction of the magnitude). Their combined impact was found to be not just a simple sum of the effects of each of the defect types. The Cu atoms are predicted to segregate toward the studied APBs, but the related energy gain is very small and amounts to only 4 meV per Cu atom. We have also performed phonon calculations and found all studied states with different atomic configurations mechanically stable without any soft phonon modes. The band gap in phonon frequencies of Fe3Al is barely affected by Cu substituents but reduced by APBs. The phonon contributions to segregation-related energy changes are significant, ranging from a decrease by 16% at T = 0 K to an increase by 17% at T = 400 K (changes with respect to the segregation-related energy difference between static lattices). Importantly, we have also examined the differences in the phonon entropy and phonon energy induced by the Cu segregation and showed their strongly nonlinear trends.


2021 ◽  
Vol 118 (20) ◽  
pp. e2022109118
Author(s):  
Linan Zhou ◽  
Minhan Lou ◽  
Junwei Lucas Bao ◽  
Chao Zhang ◽  
Jun G. Liu ◽  
...  

Light-induced hot carriers derived from the surface plasmons of metal nanostructures have been shown to be highly promising agents for photocatalysis. While both nonthermal and thermalized hot carriers can potentially contribute to this process, their specific role in any given chemical reaction has generally not been identified. Here, we report the observation that the H2–D2 exchange reaction photocatalyzed by Cu nanoparticles is driven primarily by thermalized hot carriers. The external quantum yield shows an intriguing S-shaped intensity dependence and exceeds 100% for high light intensities, suggesting that hot carrier multiplication plays a role. A simplified model for the quantum yield of thermalized hot carriers reproduces the observed kinetic features of the reaction, validating our hypothesis of a thermalized hot carrier mechanism. A quantum mechanical study reveals that vibrational excitations of the surface Cu–H bond is the likely activation mechanism, further supporting the effectiveness of low-energy thermalized hot carriers in photocatalyzing this reaction.


Sign in / Sign up

Export Citation Format

Share Document