circumventricular organs
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 33)

H-INDEX

45
(FIVE YEARS 6)

2021 ◽  
Vol 15 ◽  
Author(s):  
Amirah-Iman Hicks ◽  
Simona Kobrinsky ◽  
Suijian Zhou ◽  
Jieyi Yang ◽  
Masha Prager-Khoutorsky

The subfornical organ (SFO) is a sensory circumventricular organ located along the anterodorsal wall of the third ventricle. SFO lacks a complete blood-brain barrier (BBB), and thus peripherally-circulating factors can penetrate the SFO parenchyma. These signals are detected by local neurons providing the brain with information from the periphery to mediate central responses to humoral signals and physiological stressors. Circumventricular organs are characterized by the presence of unique populations of non-neuronal cells, such as tanycytes and fenestrated endothelium. However, how these populations are organized within the SFO is not well understood. In this study, we used histological techniques to analyze the anatomical organization of the rat SFO and examined the distribution of neurons, fenestrated and non-fenestrated vasculature, tanycytes, ependymocytes, glia cells, and pericytes within its confines. Our data show that the shell of SFO contains non-fenestrated vasculature, while fenestrated capillaries are restricted to the medial-posterior core region of the SFO and associated with a higher BBB permeability. In contrast to non-fenestrated vessels, fenestrated capillaries are encased in a scaffold created by pericytes and embedded in a network of tanycytic processes. Analysis of c-Fos expression following systemic injections of angiotensin II or hypertonic NaCl reveals distinct neuronal populations responding to these stimuli. Hypertonic NaCl activates ∼13% of SFO neurons located in the shell. Angiotensin II-sensitive neurons represent ∼35% of SFO neurons and their location varies between sexes. Our study provides a comprehensive description of the organization of diverse cellular elements within the SFO, facilitating future investigations in this important brain area.


2021 ◽  
Vol 12 ◽  
Author(s):  
Philip R. Griffiths ◽  
Stephen J. Lolait ◽  
Julian F. R. Paton ◽  
Anne-Marie O’Carroll

The central site(s) mediating the cardiovascular actions of the apelin-apelin receptor (APJ) system remains a major question. We hypothesized that the sensory circumventricular organs (CVOs), interfacing between the circulation and deeper brain structures, are sites where circulating apelin acts as a signal in the central nervous system to decrease blood pressure (BP). We show that APJ gene (aplnr) expression was elevated in the CVOs of spontaneously hypertensive rats (SHRs) compared to normotensive Wistar Kyoto (WKY) controls, and that there was a greater mean arterial BP (MABP) decrease following microinjection of [Pyr1]apelin-13 to the CVOs of SHRs compared to WKY rats. Lentiviral APJ-specific-shRNA (LV-APJ-shRNA) was used to knockdown aplnr expression, both collectively in three CVOs and discretely in individual CVOs, of rats implanted with radiotelemeters to measure arterial pressure. LV-APJ-shRNA-injection decreased aplnr expression in the CVOs and abolished MABP responses to microinjection of [Pyr1]apelin-13. Chronic knockdown of aplnr in any of the CVOs, collectively or individually, did not affect basal MABP in SHR or WKY rats. Moreover, knockdown of aplnr in any of the CVOs individually did not affect the depressor response to systemic [Pyr1]apelin-13. By contrast, multiple knockdown of aplnr in the three CVOs reduced acute cardiovascular responses to peripheral [Pyr1]apelin-13 administration in SHR but not WKY rats. These results suggest that endogenous APJ activity in the CVOs has no effect on basal BP but that functional APJ in the CVOs is required for an intact cardiovascular response to peripherally administered apelin in the SHR.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 494
Author(s):  
Jin Kwon Jeong ◽  
Samantha A. Dow ◽  
Colin N. Young

The central nervous system is critical in metabolic regulation, and accumulating evidence points to a distributed network of brain regions involved in energy homeostasis. This is accomplished, in part, by integrating peripheral and central metabolic information and subsequently modulating neuroendocrine outputs through the paraventricular and supraoptic nucleus of the hypothalamus. However, these hypothalamic nuclei are generally protected by a blood-brain-barrier limiting their ability to directly sense circulating metabolic signals—pointing to possible involvement of upstream brain nuclei. In this regard, sensory circumventricular organs (CVOs), brain sites traditionally recognized in thirst/fluid and cardiovascular regulation, are emerging as potential sites through which circulating metabolic substances influence neuroendocrine control. The sensory CVOs, including the subfornical organ, organum vasculosum of the lamina terminalis, and area postrema, are located outside the blood-brain-barrier, possess cellular machinery to sense the metabolic interior milieu, and establish complex neural networks to hypothalamic neuroendocrine nuclei. Here, evidence for a potential role of sensory CVO-hypothalamic neuroendocrine networks in energy homeostasis is presented.


Author(s):  
Adriano Barreto Nogueira ◽  
Hillary Sayuri Ramires Hoshino ◽  
Natalia Camargo Ortega ◽  
Bruna Grazielle Silva dos Santos ◽  
Manoel Jacobsen Teixeira

Evidence on adult mammalian neurogenesis and scarce studies with human brains led to the idea that adult human neurogenesis occurs in the subgranular zone (SGZ) of the dentate gyrus and in the subventricular zone (SVZ). However, findings published from 2018 rekindled controversies on adult human SGZ neurogenesis. We systematically reviewed studies published during the first decade of characterization of adult human neurogenesis (1994–2004) – when the two-neurogenic-niche concept in humans was consolidated – and compared with further studies. The synthesis of both periods is that adult human neurogenesis occurs in an intensity ranging from practically zero to a level comparable to adult mammalian neurogenesis in general, which is the prevailing conclusion. Nonetheless, Bernier and colleagues showed in 2000 intriguing indications of adult human neurogenesis in a broad area including the limbic system. Likewise, we later showed evidence that limbic and hypothalamic structures surrounding the circumventricular organs form a continuous zone expressing neurogenesis markers encompassing the SGZ and SVZ. The conclusion is that publications from 2018 on adult human neurogenesis did not bring novel findings on location of neurogenic niches. Rather, we expect that the search of neurogenesis beyond the canonical adult mammalian neurogenic niches will confirm our indications that adult human neurogenesis is orchestrated in a broad brain area. We predict that this approach may, for example, clarify that human hippocampal neurogenesis occurs mostly in the CA1-subiculum zone and that the previously identified human rostral migratory stream arising from the SVZ is indeed the column of the fornix expressing neurogenesis markers.


2021 ◽  
Vol 8 ◽  
Author(s):  
Melissa A. Miller ◽  
Megan E. Moriarty ◽  
Pádraig J. Duignan ◽  
Tanja S. Zabka ◽  
Erin Dodd ◽  
...  

The marine biotoxin domoic acid (DA) is an analog of the neurotransmitter glutamate that exerts potent excitatory activity in the brain, heart, and other tissues. Produced by the diatom Pseudo-nitzschia spp., DA accumulates in marine invertebrates, fish, and sediment. Southern sea otters (Enhydra lutris nereis) feed primarily on invertebrates, including crabs and bivalves, that concentrate and slowly depurate DA. Due to their high prey consumption (25% of body weight/day), sea otters are commonly exposed to DA. A total of 823 necropsied southern sea otters were examined to complete this study; first we assessed 560 subadult, adult, and aged adult southern sea otters sampled from 1998 through 2012 for DA-associated pathology, focusing mainly on the central nervous system (CNS) and cardiovascular system. We applied what was learned to an additional cohort of necropsied sea otters of all demographics (including fetuses, pups, juveniles, and otters examined after 2012: n = 263 additional animals). Key findings derived from our initial efforts were consistently observed in this more demographically diverse cohort. Finally, we assessed the chronicity of DA-associated pathology in the CNS and heart independently for 54 adult and aged adult sea otters. Our goals were to compare the temporal consistency of DA-associated CNS and cardiovascular lesions and determine whether multiple episodes of DA toxicosis could be detected on histopathology. Sea otters with acute, fatal DA toxicosis typically presented with neurological signs and severe, diffuse congestion and multifocal microscopic hemorrhages (microhemorrhages) in the brain, spinal cord, cardiovascular system, and eyes. The congestion and microhemorrhages were associated with detection of high concentrations of DA in postmortem urine or gastrointestinal content and preceded histological detection of cellular necrosis or apoptosis. Cases of chronic DA toxicosis often presented with cardiovascular pathology that was more severe than the CNS pathology; however, the lesions at both sites were relatively quiescent, reflecting previous damage. Sea otters with fatal subacute DA toxicosis exhibited concurrent CNS and cardiovascular pathology that was characterized by progressive lesion expansion and host response to DA-associated tissue damage. Acute, subacute, and chronic cases had the same lesion distribution in the CNS and heart. CNS pathology was common in the hippocampus, olfactory, entorhinal and parahippocampal cortex, periventricular neuropil, and ventricles. The circumventricular organs were identified as important DA targets; microscopic examination of the pituitary gland, area postrema, other circumventricular organs, and both eyes facilitated confirmation of acute DA toxicosis in sea otters. DA-associated histopathology was also common in cardiomyocytes and coronary arterioles, especially in the left ventricular free wall, papillary muscles, cardiac apex, and atrial free walls. Progressive cardiomyocyte loss and arteriosclerosis occurred in the same areas, suggesting a common underlying mechanism. The temporal stage of DA-associated CNS pathology matched the DA-associated cardiac pathology in 87% (n = 47/54) of cases assessed for chronicity, suggesting that the same underlying process (e.g., DA toxicosis) was the cause of these lesions. This temporally matched pattern is also indicative of a single episode of DA toxicosis. The other 13% of examined otters (n = 7/54) exhibited overlapping acute, subacute, or chronic DA pathology in the CNS and heart, suggestive of recurrent DA toxicosis. This is the first rigorous case definition to facilitate diagnosis of DA toxicosis in sea otters. Diagnosing this common but often occult condition is important for improving clinical care and assessing population-level impacts of DA exposure in this federally listed threatened subspecies. Because the most likely source of toxin is through prey consumption, and because humans, sea otters, and other animals consume the same marine foods, our efforts to characterize health effects of DA exposure in southern sea otters can provide strong collateral benefits.


2021 ◽  
pp. 107385842098410
Author(s):  
Muhammad Ali Haidar ◽  
Hussam Jourdi ◽  
Zeinab Haj Hassan ◽  
Ohanes Ashekyan ◽  
Manal Fardoun ◽  
...  

SARS-CoV-2 infects cells through angiotensin-converting enzyme 2 (ACE2), a ubiquitous receptor that interacts with the virus’ surface S glycoprotein. Recent reports show that the virus affects the central nervous system (CNS) with symptoms and complications that include dizziness, altered consciousness, encephalitis, and even stroke. These can immerge as indirect immune effects due to increased cytokine production or via direct viral entry into brain tissue. The latter is possible through neuronal access via the olfactory bulb, hematogenous access through immune cells or directly across the blood-brain barrier (BBB), and through the brain’s circumventricular organs characterized by their extensive and highly permeable capillaries. Last, the COVID-19 pandemic increases stress, depression, and anxiety within infected individuals, those in isolation, and high-risk populations like children, the elderly, and health workers. This review surveys the recent updates of CNS manifestations post SARS-CoV-2 infection along with possible mechanisms that lead to them.


The article presents literature data numerous studies of patients with COVID-19. The available information helps to explain the nature and structure of the virus, the ways of penetration and its distribution in the human body, its interaction with the immune, nervous, endocrine, vascular, muscular systems, as well as the pathogenesis, clinic, diagnosis and treatment of this contingent of patients. Due to tropisms SARS-CoV-2 to the human cells specifi c S glycoprotein this virus can bind receptor human angiotensin-converting enzyme 2 (ACE-2), fuse with host cells and disseminate in the organism. Renin-angiotensin-aldosteron system (RAAS) plays an important role in regulation of blood vessels, heart, kidneys functions. ACE-2 has an infl uence on the infl ammatory, fi brotic and immunomodulatory mechanisms. Inhibition of these protection functions due to spread SARS-CoV-2 in human body leads to the progression of cardiovascular, renal and pulmonary diseases. Some authors describe indirectly the viral entry into the brain parenchyma by infecting the T-lymphocytes, that usually is accompanied by infl ammatory reactions with an increase in the specifi c cytokines such as interleukins (IL) — 6, IL-8, tumor necrosis factor, monocyte chemoattractant protein-1 (MCP-1). The peculiarities of the binding of the virus to the human cells are the presence of neurotropic properties and the ability to change the permeability of blood brain barier (BBB). Other authors note that the virus crosses the BBB directly through the olfactory neurons and also the brain’s circumventricular organs structures, surrounding the third and fourth ventricles, and promote the infection of nervous system. It can also cause intravascular coagulation and blood clotting, which may lead to various diseases of the nervous system. In this regard, an important task for neurologists is to further study the eff ect of the COVID-19 virus on the nervous system and prevent the occurrence of its complications.


Author(s):  
Erzsébet Farkas ◽  
Anett Szilvásy-Szabó ◽  
Yvette Ruska ◽  
Richárd Sinkó ◽  
Morten Grønbech Rasch ◽  
...  

AbstractGlucagon-like peptide-1 (GLP-1) inhibits food intake and regulates glucose homeostasis. These actions are at least partly mediated by central GLP-1 receptor (GLP-1R). Little information is available, however, about the subcellular localization and the distribution of the GLP-1R protein in the rat brain. To determine the localization of GLP-1R protein in the rat brain, immunocytochemistry was performed at light and electron microscopic levels. The highest density of GLP-1R-immunoreactivity was observed in the circumventricular organs and regions in the vicinity of these areas like in the arcuate nucleus (ARC) and in the nucleus tractus solitarii (NTS). In addition, GLP-1R-immunreactive (IR) neuronal profiles were also observed in a number of telencephalic, diencephalic and brainstem areas and also in the cerebellum. Ultrastructural examination of GLP-1R-immunoreactivity in energy homeostasis related regions showed that GLP-1R immunoreactivity is associated with the membrane of perikarya and dendrites but GLP-1R can also be observed inside and on the surface of axon varicosities and axon terminals. In conclusion, in this study we provide a detailed map of the GLP-1R-IR structures in the CNS. Furthermore, we demonstrate that in addition to the perikaryonal and dendritic distribution, GLP-1R is also present in axonal profiles suggesting a presynaptic action of GLP-1. The very high concentration of GLP-1R-profiles in the circumventricular organs and in the ARC and NTS suggests that peripheral GLP-1 may influence brain functions via these brain areas.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Inge C. M. Verheggen ◽  
Joost J. A. de Jong ◽  
Martin P. J. van Boxtel ◽  
Alida A. Postma ◽  
Frans R. J. Verhey ◽  
...  

Abstract Background Circumventricular organs (CVOs) are small structures without a blood–brain barrier surrounding the brain ventricles that serve homeostasic functions and facilitate communication between the blood, cerebrospinal fluid and brain. Secretory CVOs release peptides and sensory CVOs regulate signal transmission. However, pathogens may enter the brain through the CVOs and trigger neuroinflammation and neurodegeneration. We investigated the feasibility of dynamic contrast-enhanced (DCE) MRI to assess the CVO permeability characteristics in vivo, and expected significant contrast uptake in these regions, due to blood–brain barrier absence. Methods Twenty healthy, middle-aged to older males underwent brain DCE MRI. Pharmacokinetic modeling was applied to contrast concentration time-courses of CVOs, and in reference to white and gray matter. We investigated whether a significant and positive transfer from blood to brain could be measured in the CVOs, and whether this differed between secretory and sensory CVOs or from normal-appearing brain matter. Results In both the secretory and sensory CVOs, the transfer constants were significantly positive, and all secretory CVOs had significantly higher transfer than each sensory CVO. The transfer constants in both the secretory and sensory CVOs were higher than in the white and gray matter. Conclusions Current measurements confirm the often-held assumption of highly permeable CVOs, of which the secretory types have the strongest blood-to-brain transfer. The current study suggests that DCE MRI could be a promising technique to further assess the function of the CVOs and how pathogens can potentially enter the brain via these structures. Trial registration: Netherlands Trial Register number: NL6358, date of registration: 2017-03-24


Sign in / Sign up

Export Citation Format

Share Document