invariant potential
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 11)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Sangwha Yi

In the special relativity theory, we study the gauge theory in the electro-magnetic field theory.Using that the Electro-magnetic potential is 4-vector, we treat the invariant potential. Electro-magnetic field theory’s the gauge theory is expanded


Author(s):  
Max A Lohe

Abstract We construct a system of $N$ interacting particles on the unit sphere $S^{d-1}$ in $d$-dimensional space, which has $d$-body interactions only. The equations have a gradient formulation derived from a rotationally-invariant potential of a determinantal form summed over all nodes, with antisymmetric coefficients. For $d=3$, for example, all trajectories lie on the $2$-sphere and the potential is constructed from the triple scalar product summed over all oriented $2$-simplices. We investigate the cases $d=3,4,5$ in detail, and find that the system synchronizes from generic initial values, for both positive and negative coupling coefficients, to a static final configuration in which the particles lie equally spaced on $S^{d-1}$. Completely synchronized configurations also exist, but are unstable under the $d$-body interactions. We compare the relative effect of $2$-body and $d$-body forces by adding the well-studied $2$-body interactions to the potential, and find that higher-order interactions enhance the synchronization of the system, specifically, synchronization to a final configuration consisting of equally spaced particles occurs for all $d$-body and $2$-body coupling constants of any sign, unless the attractive $2$-body forces are sufficiently strong relative to the $d$-body forces. In this case the system completely synchronizes as the $2$-body coupling constant increases through a positive critical value, with either a continuous transition for $d=3$, or discontinuously for $d=5$. Synchronization also occurs if the nodes have distributed natural frequencies of oscillation, provided that the frequencies are not too large in amplitude, even in the presence of repulsive 2-body interactions which by themselves would result in asynchronous behaviour.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 471
Author(s):  
Nicolas Boulanger ◽  
Fabien Buisseret ◽  
Guillaume Lhost

We first quantize an action proposed by Casalbuoni and Gomis in 2014 that describes two massless relativistic scalar particles interacting via a conformally invariant potential. The spectrum is a continuum of massive states that may be interpreted as unparticles. We then obtain in a similar way the mass operator for a deformed action in which two terms are introduced that break the conformal symmetry: a mass term and an extra position-dependent coupling constant. A simple Ansatz for the latter leads to a mass operator with linear confinement in terms of an effective string tension σ. The quantized model is confining when σ≠0 and its mass spectrum shows Regge trajectories. We propose a tensionless limit in which highly excited confined states reduce to (gapped) unparticles. Moreover, the low-lying confined bound states become massless in the latter limit as a sign of conformal symmetry restoration and the ratio between their masses and σ stays constant. The originality of our approach is that it applies to both confining and conformal phases via an effective interacting model.


2021 ◽  
Author(s):  
Christopher Terry ◽  
Jacob L Dinner O'Sullivan ◽  
Axel G. Rossberg

While recent meta- analyses have suggested that local taxonomic richness has on average remained invariant, potential shifts in functional traits remain underexplored at global scales. Here, by linking the largest cross-taxa community time series database to multiple trait databases, we show that within communities there is no clear trend between size traits and changes in abundance rank over time. This suggests that there is no pervasive tendency across biomes for larger species to be doing proportionally better or worse than smaller species.


2019 ◽  
Vol 34 (31) ◽  
pp. 1950257
Author(s):  
Ichiro Oda

It is well known that in order to make the path integral of general relativity converge, one has to perform the Wick rotation over the conformal factor in addition to the more familiar Wick rotation of the time axis to pass to the spacetime with Euclidean signature. In this paper, we will apply this technique to a scalar field in the conformally invariant scalar–tensor gravity with a conformally invariant beyond-standard-model (BSM). It is then shown that a potential term in the conformally invariant potential, which corresponds to the Higgs mass term in the Higgs potential of the Standard Model (SM), can have a negative coefficient. The change of sign of the potential term naturally induces spontaneous symmetry breakdown of the electroweak gauge symmetry after symmetry breaking of conformal symmetry (local scale symmetry) via the Coleman–Weinberg mechanism around the Planck scale. This study might shed light on the fact that the existence of a stable vacuum in quantum gravity is relevant to that in the SM.


2019 ◽  
Vol 21 (43) ◽  
pp. 24101-24111 ◽  
Author(s):  
Yang Liu ◽  
Jun Li

The first full-dimensional accurate potential energy surface was developed for the CO + H2O system based on ca. 102 000 points calculated at the CCSD(T)-F12a/AVTZ level using a permutation invariant polynomial-neural network (PIP-NN) method.


Sign in / Sign up

Export Citation Format

Share Document