The works in which designs of the dust collectors, which are often used in the industry, are analyzed. It is shown that the efficiency of dust collectors largely depends on the structure of the gas flow in the apparatus. Based on the analysis of the current cyclone devices, a picture of the separation process is obtained, and the factors that negatively affect the operation of dust collectors are identified. It is established that forecasting the work of dust collecting devices in certain conditions is most effective to perform methods of numerical modeling and simulation of the separation process, which are widely used for the research of devices of this type. Using the methods of numerical simulation, the study of the cyclone with intermediate dust removal was carried out. In this cyclone, the change in the radius of the apparatus of the tangential, radial, and axial velocity components is investigated. In the course of the research, it is established that in the separation space the tangential component of velocity increases from 18–20 m/s in the upper part of the device to 22–25 m/s in the area of the lower end of the exhaust pipe, the radial component of velocity takes values from 0 to 2 m/s, and the axial component of the speed has a maximum value of 10–15 m/s. In the conical part of the apparatus the tangential component of velocity decreases from 27 m/s in the upper planes of the conical part of the apparatus to 10 m / s near the dust unloading pipe, the radial component of speed has centripetal character, the axial component of speed decreases as the gas flow to the dust unloading pipe decreases. It has been established that in the cylindrical part of the apparatus about 60 % of the gas flow volume is transferred from the downstream to the upstream by a secondary vortex, and in the conical part, about 40 % of the gas volume is transferred from the downstream to the upstream. It is shown that large values of the tangential component of velocity in the separation zone contribute to the ingress of dust particles into the annular space behind the dust unloading holes, and small values of the tangential component of velocity, axial and radial in the annular space behind the dust unloading holes has a positive effect on the operation of the dust collector.