finite simplicial complex
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 0)

2020 ◽  
Vol 13 (4) ◽  
pp. 116-125
Author(s):  
Jose R. Oliveira

Based on the isomorphism between Lie algebroid cohomology and piecewise smooth cohomology of a transitive Lie algebroid, it is proved that the Rham cohomology of a locally trivial Lie groupoid G on a smooth manifold M is isomorphic to the piecewise Rham cohomology of G, in which G and M are manifolds without boundary and M is smoothly triangulated by a finite simplicial complex K such that, for each simplex ∆ of K, the inverse images of ∆ by the source and target mappings of G are transverses submanifolds in the ambient space G. As a consequence, it is shown that the piecewise de Rham cohomology of G does not depend on the triangulation of the base.


Author(s):  
Ehud Hrushovski ◽  
François Loeser

This chapter presents various applications to the topology of classical Berkovich spaces. It deduces from the main theorem several new results on the topology of V(superscript an) which were not known previously in such a level of generality. In particular, it shows that V(superscript an) admits a strong deformation retraction to a subspace homeomorphic to a finite simplicial complex and that V(superscript an) is locally contractible. The chapter also proves the existence of strong retractions to skeleta for analytifications of definable subsets of quasi-projective varieties and goes on to prove finiteness of homotopy types in families in a strong sense and a result on homotopy equivalence of upper level sets of definable functions. Finally, it describes an injection in the opposite direction (over an algebraically closed field) which in general provides an identification between points of Berkovich analytifications and Galois orbits of stably dominated points.


2017 ◽  
Vol 60 (3) ◽  
pp. 470-477 ◽  
Author(s):  
Urtzi Buijs ◽  
Yves Félix ◽  
Aniceto Murillo ◽  
Daniel Tanré

AbstractIn a previous work, we associated a complete diòerential graded Lie algebra to any finite simplicial complex in a functorial way. Similarly, we also have a realization functor fromthe category of complete diòerential graded Lie algebras to the category of simplicial sets. We have already interpreted the homology of a Lie algebra in terms of homotopy groups of its realization. In this paper, we begin a dictionary between models and simplicial complexes by establishing a correspondence between the Deligne groupoid of the model and the connected components of the finite simplicial complex.


10.37236/2552 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Jennifer Biermann ◽  
Adam Van Tuyl

Given any finite simplicial complex $\Delta$, we show how to construct from a colouring $\chi$ of $\Delta$ a new simplicial complex $\Delta_{\chi}$ that is balanced and vertex decomposable. In addition, the $h$-vector of $\Delta_{\chi}$ is precisely the $f$-vector of $\Delta$.  Our construction generalizes the "whiskering'' construction of Villarreal, and Cook and Nagel. We also reverse this construction to prove a special case of a conjecture of Cook and Nagel, and Constantinescu and Varbaro on the $h$-vectors of flag complexes.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Emanuele Delucchi ◽  
Aaron Pixton ◽  
Lucas Sabalka

International audience We take a geometric point of view on the recent result by Brenti and Welker, who showed that the roots of the $f$-polynomials of successive barycentric subdivisions of a finite simplicial complex $X$ converge to fixed values depending only on the dimension of $X$. We show that these numbers are roots of a certain polynomial whose coefficients can be computed explicitly. We observe and prove an interesting symmetry of these roots about the real number $-2$. This symmetry can be seen via a nice realization of barycentric subdivision as a simple map on formal power series. We then examine how such a symmetry extends to more general types of subdivisions. The generalization is formulated in terms of an operator on the (formal) ring on the set of simplices of the complex. On applique un point de vue géométrique à un récent résultat de Brenti et Welker, qui ont montré que les racines des polynômes $f$ de subdivisions barycentriques successives d'un complexe simplicial $X$ convergent vers des valeurs fixes, ne dépendant que de la dimension de $X$. On prouve que ces nombres sont en effet eux-mêmes racines d'un polynôme dont les coefficients peuvent être calculés explicitement. De plus, on observe et on démontre une symétrie particulière de ces nombres autour du numéro $-2$. Cette symétrie se révèle en exprimant l'opération de subdivision barycentrique par une fonction sur des séries de puissances formelles. Une symétrie pareille existe pour des méthodes de subdivision plus générales, où elle s'exprime par des opérateurs sur l'anneau des sommes formelles de simplexes du complexe.


2006 ◽  
Vol 93 (2) ◽  
pp. 515-544 ◽  
Author(s):  
PO HU

In this paper, I give a generalized analogue of the string topology results of Chas and Sullivan, and of Cohen and Jones. For a finite simplicial complex $X$ and $k \geq 1$, I construct a spectrum $Maps(S^k, X)^{S(X)}$, which is obtained by taking a generalization of the Spivak bundle on $X$ (which however is not a stable sphere bundle unless $X$ is a Poincaré space), pulling back to $Maps(S^k, X)$ and quotienting out the section at infinity. I show that the corresponding chain complex is naturally homotopy equivalent to an algebra over the $(k + 1)$-dimensional unframed little disk operad $\mathcal{C}_{k + 1}$. I also prove a conjecture of Kontsevich, which states that the Quillen cohomology of a based $\mathcal{C}_k$-algebra (in the category of chain complexes) is equivalent to a shift of its Hochschild cohomology, as well as prove that the operad $C_{\ast}\mathcal{C}_k$ is Koszul-dual to itself up to a shift in the derived category. This gives one a natural notion of (derived) Koszul dual $C_{\ast}\mathcal{C}_k$-algebras. I show that the cochain complex of $X$ and the chain complex of $\Omega^k X$ are Koszul dual to each other as $C_{\ast}\mathcal{C}_k$-algebras, and that the chain complex of $Maps(S^k, X)^{S(X)}$ is naturally equivalent to their (equivalent) Hochschild cohomology in the category of $C_{\ast}\mathcal{C}_k$-algebras.


2005 ◽  
Vol 48 (1) ◽  
pp. 50-68 ◽  
Author(s):  
George A. Elliott ◽  
Guihua Gong ◽  
Liangqing Li

AbstractLet A be the inductive limit of a systemwith , where Xn,i is a finite simplicial complex, and Pn,i is a projection in M[n,i](C(Xn,i)). In this paper, we will prove that A can be written as another inductive limitwith , where Yn,i is a finite simplicial complex, and Qn, i is a projection inM{n,i}(C(Yn,i)), with the extra condition that all the maps ψn,n+1 are injective. (The result is trivial if one allows the spaces Yn,i to be arbitrary compact metrizable spaces.) This result is important for the classification of simple AH algebras. The special case that the spaces Xn,iare graphs is due to the third author.


1999 ◽  
Vol 09 (01) ◽  
pp. 51-77 ◽  
Author(s):  
IGOR MINEYEV

We prove the analog of de Rham's theorem for ℓ∞-cohomology of the universal cover of a finite simplicial complex. A sufficient criterion is given for linearity of isoperimetric functions for filling cycles of any positive dimension over ℝ. This implies the linear higher dimensional isoperimetric inequalities for the fundamental groups of finite negatively curved complexes and of closed negatively curved manifolds. Also, these groups are ℝ-metabolic.


1980 ◽  
Vol 32 (6) ◽  
pp. 1306-1310
Author(s):  
M. Brown ◽  
A. G. Wasserman

What invariants of a finite simplicial complex K can be computed solely from the values v0(K), V1(K), …, vi(K), … where Vi(K) is the number of i-simplexes of K? The Euler chracteristic χ(K) = Σ i (– 1)ivi(K) is a subdivision invariant and a homotopy invariant while the dimension of K is a subdivision invariant and homeomorphism invariant. In [3], Wall has shown that the Euler chracteristic is the only linear function to the integers that is a subdivision invariant. In this paper we show that the only subdivision invariants (linear or not) of K are the Euler characteristic and the dimension. More precisely we prove the following theorem.


Sign in / Sign up

Export Citation Format

Share Document