interior domain
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 36 (32) ◽  
Author(s):  
M. Z. Bhatti ◽  
Z. Yousaf ◽  
T. Ashraf

This work probes the influence of charge field on the unique stellar structure, regarded as gravastar, under the corrections of [Formula: see text] theory, i.e. [Formula: see text] theory, where [Formula: see text] is named as Gauss–Bonnet invariant. The gravastar has also been recognized as an alternate candidate of black hole structure and is illustrated by three distinct regions termed as (1) the exterior (2) the intermediate thin shell (3) the interior domain. We discussed the mathematical solutions for each of three regions separately with the assistance of different equation-of-states (EoS). The exterior charged vacuum domain is expressed by the Reissner–Nordström solution. The central region is illustrated by the EoS, i.e. a positive pressure of ultra-relativistic matter is equal to the energy density. Whereas, the interior domain reflects that the negative pressure is equal to energy density and manifests a non-attractive force over the central spherical shell. We deduce that in the context of [Formula: see text] theory, the nonsingular charged model with distinct physical features, such as energy, length, entropy, is physically viable and consistent.


Author(s):  
Hui Li ◽  
Baoli Deng ◽  
Chunlei Liu ◽  
Jian Zou ◽  
Huilong Ren

Abstract A novel matching method has been developed to solve the wave-induced motions and loads of ships with forward speed. The fluid domain is divided into two subdomains by a cylindrical control surface: an interior domain and an exterior domain. Unlike the conventional domain decomposition strategy, the control surface is meshless in present method, on which the physical quantities are expanded into Fourier-Laguerre series. Based on forward speed Green function, the source distribution method is adopted to solve the exterior domain. The calculations of boundary integral equation about forward speed Green function over the control surface are performed analytically, and the solution of exterior domain provides a Dirichlet-to-Neumann (DN) relation on the control surface. In the interior domain, the boundary value problem is solved by Rankine source method. In order to be consistent with exterior solution, the control surface is kept meshless. The ship hull is discretized into constant panels. The free-surface is discretized into cubic B-splines to represent the high-order derivatives of velocity potential precisely. Then, the DN relation is used to close the equation system established in the interior domain. Comparisons with known experimental measurements show that the calculations achieve good accuracy. Furthermore, the influences of numerical method used in the exterior domain are described.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Isidore Last ◽  
Andreas Heidenreich ◽  
Joshua Jortner

AbstractWe present a theoretical-computational study of the formation, structure, composition, energetics, dynamics and expansion of nanoplasmas consisting of high-energy matter on the nanoscale of ions and electrons. Molecular dynamics simulations explored the structure and energetics of hydrogen and neon persistent nanoplasmas formed under the condition of incomplete outer ionization by the laser field. We observed a marked microscopic inhomogeneity of the structure and the charge distribution of exploding nanoplasmas on the nanoscale. This is characterized by a nearly neutral, uniform, interior domain observed for the first time, and a highly positively charged, exterior domain, with these two domains being separated by a transition domain. We established the universality of the general features of the shape of the charge distribution, as well as of the energetics and dynamics of individual ions in expanding persistent nanoplasmas containing different positive ions. The inhomogeneous three-domain shell structure of exploding nanoplasmas exerts major effects on the local ion energies, which are larger by one order of magnitude in the exterior, electron-depleted domain than in the interior, electron-rich domain, with the major contribution to the ion energies originating from electrostatic interactions. The radial structural inhomogeneity of exploding nanoplasmas bears analogy to the inhomogeneous transport regime in expanded and supercritical metals undergoing metal-nonmetal transition.


2019 ◽  
Vol 4 (4) ◽  
pp. 619-632
Author(s):  
Siamak Akbarzadeh ◽  
Hassan Kassem ◽  
Renko Buhr ◽  
Gerald Steinfeld ◽  
Bernhard Stoevesandt

Abstract. A continuous adjoint solver is developed for calibration of the inlet velocity profile boundary condition (BC) for computational fluid dynamics (CFD) simulations of the neutral atmospheric boundary layer (ABL). The adjoint solver uses interior domain wind speed observations to compute the gradient of a calibration function with respect to inlet velocity speed and wind direction. The solver has been implemented in the open-source CFD package OpenFOAM coupled with the local gradient-based “CONMIN-frcg” solver of the DAKOTA optimization package. The feasibility of the optimizer output is continuously monitored during the calibration process. The inlet flow profile is considered acceptable only if it can be fitted to a logarithmic or power law function with a tolerance of 3 %. Otherwise, the optimization takes the last fitted profile and asks for a new gradient evaluation. The newly developed framework has been applied in two cases, namely the Ishihara case and Kassel domain. By using the measurements over the hill in the Ishihara case, the method was able to predict the velocity profiles upstream and downstream of the hill accurately. For the Kassel domain, despite the complexity of the site, the method managed to achieve the targeted profile within a reasonable number of the solver calls.


2019 ◽  
Author(s):  
Catherine M. Buckley ◽  
Henderikus Pots ◽  
Aurelie Gueho ◽  
Ben A. Phillips ◽  
Bernd Gilsbach ◽  
...  

AbstractEngulfment of extracellular material by phagocytosis or macropinocytosis depends on the ability of cells to generate specialised cup shaped protrusions. To effectively capture and internalise their targets, these cups are organised into a ring or ruffle of actin-driven protrusion encircling a non-protrusive interior domain. These functional domains depend on the combined activities of multiple Ras and Rho family small GTPases, but how their activities are integrated and differentially regulated over space and time is unknown. Here, we show that the amoeba Dictyostelium discoideum coordinates Ras and Rac activity using the multidomain protein RGBARG (RCC1, RhoGEF, BAR and RasGAP-containing protein). We find RGBARG uses a tripartite mechanism of Ras, Rac and phospholipid interactions to localise at the protruding edge and interface with the interior of both macropinocytic and phagocytic cups. There, RGBARG shapes the protrusion by driving Rac activation at the rim whilst suppressing expansion of the active Ras interior domain. Consequently, cells lacking RGBARG form enlarged, flat interior domains unable to generate large macropinosomes. During phagocytosis, we find that disruption of RGBARG causes a geometry-specific defect in engulfing rod-shaped bacteria and ellipsoidal beads. This demonstrates the importance of co-ordinating small GTPase activities during engulfment of more complex shapes and thus the full physiological range of microbes, and how this is achieved in a model professional phagocyte.


Author(s):  
R. Silva ◽  
M. Brett ◽  
Almerindo D. Ferreira ◽  
C. Serra ◽  
T. Jesus ◽  
...  

Abstract Climatic chambers are of great importance in research and development to conduct tests of components in closed environmentally controlled conditions. The growing demand from the industry to fulfill stricter international standards creates the necessity to ensure that the thermofluidic behavior of climatic chambers guarantees high-quality consistency in their interior domain. At present, scientific research on climatic chambers available in the literature is scarce and is mostly based on lumped modeling, hence not addressing the heterogeneities that arise in the interior of the chamber. In this work, an in-depth 3D model of the velocity and temperature fields that develops in the interior of climatic chambers was developed in computer fluid dynamics (CFD) and validated with the experimental data from a new prototype. The key objective of this research was to establish a validated framework for model-based design optimization of climatic chambers. The proposed model showed good agreement with the experimental data with a difference of 0.6 m/s and 9.65 °C in the velocity and temperature fields, respectively, thus validating its applicability to perform model-based design optimization of climatic chambers.


2019 ◽  
Author(s):  
Siamak Akbarzadeh ◽  
Hassan Kassem ◽  
Renko Buhr ◽  
Gerald Steinfeld ◽  
Bernhard Stoevesandt

Abstract. A continuous adjoint solver is developed for optimization of the inlet velocity profile boundary condition for CFD simulations of the neutral atmospheric boundary layer (ABL). The adjoint solver uses interior domain wind speed observations to compute the gradient of a calibration function with respect to inlet velocity components and wind direction. The solver has been implemented in the open source CFD package OpenFOAM. The sensitivities computed by the newly developed adjoint solver are validated against the second order finite-difference method. Furthermore, the DAKOTA optimization package is coupled with OpenFOAM, and a number of numerical studies are carried out including the calibration of the inlet velocity profile of a 3-D complex domain.


2017 ◽  
Vol 9 (6) ◽  
pp. 112 ◽  
Author(s):  
Chein-Shan Liu ◽  
Zhuojia Fu ◽  
Chung-Lun Kuo

We propose a simple extension of the two-dimensional method of fundamental solutions (MFS) to a two-dimensional like MFS for the numerical solution of the three-dimensional Laplace equation in an arbitrary interior domain. In the directional MFS (DMFS) the directors are planar orientations, which can take the geometric anisotropy of the problem domain into account, and more importantly the order of the logarithmic singularity with $\ln R$ of the new fundamental solution is reduced than that of the conventional three-dimensional fundamental solution with singularity $1/r$. Some numerical examples are used to validate the performance of the DMFS.


2016 ◽  
Vol 01 (03n04) ◽  
pp. 1640001 ◽  
Author(s):  
Xanthippi Markenscoff

The self-similarly dynamically (subsonically) expanding anisotropic ellipsoidal Eshelby inclusion is shown to exhibit the constant stress “Eshelby property” in the interior domain of the expanding inclusion on the basis of dimensional analysis, analytic properties and the proof for the static inclusion alone. As an example of this property and the application of the dynamic Eshelby tensor (constant in the interior domain), it is shown that the Eshelby equivalent inclusion method always allows for the determination of the equivalent transformation strain for a self-similarly dynamically expanding inhomogeneous spherical inclusion when the Poisson's ratio is in the real range (positive definiteness of the strain energy). Thus, the solution of dynamically self-similarly expanding inhomogeneities (chemical phase change) with transformation strain can be obtained, as well as the driving force per unit area of the expanding inhomogeneity.


2016 ◽  
Vol 22 (3) ◽  
pp. 573-578 ◽  
Author(s):  
Xanthippi Markenscoff

For a self-similarly subsonically dynamically expanding Eshelby inclusion, we show by an analytic argument (based on the analyticity of the coefficients of the ensuing elliptic system and the Cauchy–Kowalevska theorem) that the particle velocity vanishes in the whole interior domain of the expanding inclusion. Since the acceleration term is thus zero in the interior domain in the Navier equations of elastodynamics, this reduces to an Eshelby problem. The classical Hill jump conditions across the interface of a region with transformation strain are expanded here to dynamics when the interface is moving with inertia satisfying the Hadamard jump conditions. The validity of the Eshelby property and the determination of the constrained strain from the dynamic Eshelby tensor in the interior domain allow one to fully determine from the Hill jump conditions the stress across the moving phase boundary of a self-similarly expanding ellipsoidal Eshelby inhomogeneous inclusion. The driving force can then be obtained. Self-similar motion grasps the early response of the system.


Sign in / Sign up

Export Citation Format

Share Document