tumoral cells
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 87)

H-INDEX

24
(FIVE YEARS 7)

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 369
Author(s):  
Saidu Sani ◽  
Nikita Pallaoro ◽  
Mélissa Messe ◽  
Chloé Bernhard ◽  
Nelly Etienne-Selloum ◽  
...  

Despite extensive treatment, glioblastoma inevitably recurs, leading to an overall survival of around 16 months. Understanding why and how tumours resist to radio/chemotherapies is crucial to overcome this unmet oncological challenge. Primary and acquired resistance to Temozolomide (TMZ), the standard-of-care chemotherapeutic drug, have been the subjects of several studies. This work aimed to evaluate molecular and phenotypic changes occurring during and after TMZ treatment in a glioblastoma cell model, the U87MG. These initially TMZ-sensitive cells acquire long-lasting resistance even after removal of the drug. Transcriptomic analysis revealed that profound changes occurred between parental and resistant cells, particularly at the level of the integrin repertoire. Focusing on α5β1 integrin, which we proposed earlier as a glioblastoma therapeutic target, we demonstrated that its expression was decreased in the presence of TMZ but restored after removal of the drug. In this glioblastoma model of recurrence, α5β1 integrin plays an important role in the proliferation and migration of tumoral cells. We also demonstrated that reactivating p53 by MDM2 inhibitors concomitantly with the inhibition of this integrin in recurrent cells may overcome the TMZ resistance. Our results may explain some integrin-based targeted therapy failure as integrin expressions are highly switchable during the time of treatment. We also propose an alternative way to alter the viability of recurrent glioblastoma cells expressing a high level of α5β1 integrin.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3154
Author(s):  
Ronimara A. Santos ◽  
Emmanuele D. S. Andrade ◽  
Mariana Monteiro ◽  
Eliane Fialho ◽  
Jerson L. Silva ◽  
...  

Green tea (GT) has been shown to play an important role in cancer chemoprevention. However, the related molecular mechanisms need to be further explored, especially regarding the use of GT extract (GTE) from the food matrix. For this study, epigallocatechin gallate (EGCG) and epigallocatechin (EGC) were identified in GTE, representing 42 and 40% of the total polyphenols, respectively. MDA-MB-231 (p53-p.R280K mutant) and MCF-7 (wild-type p53) breast tumor cells and MCF-10A non-tumoral cells were exposed to GTE for 24–48 h and cell viability was assessed in the presence of p53 inhibitor pifithrin-α. GTE selectively targeted breast tumor cells without cytotoxic effect on non-tumoral cells and p53 inhibition led to an increase in viable cells, especially in MCF-7, suggesting the involvement of p53 in GTE-induced cytotoxicity. GTE was also effective in reducing MCF-7 and MDA-MD-231 cell migration by 30 and 50%, respectively. An increment in p53 and p21 expression stimulated by GTE was observed in MCF-7, and the opposite phenomenon was found in MDA-MB-231 cells, with a redistribution of mutant-p53 from the nucleus and no differences in p21 levels. All these findings provide insights into the action of GTE and support its anticarcinogenic potential on breast tumor cells.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7472
Author(s):  
Virginie Xavier ◽  
Tiane C. Finimundy ◽  
Sandrina A. Heleno ◽  
Joana S. Amaral ◽  
Ricardo C. Calhelha ◽  
...  

Cupressus sempervirens L., Juniperus communis L. and Cistus ladanifer L. are Mediterranean arboreal and shrub species that possess essential oils (EO) in their leaves and branches. This study aimed at characterizing the EOs obtained by steam distillation from the three species collected in different locations from Spain (Almazán, Andévalo, Barriomartín, Cerezal, Ermitas and Huéscar). For this purpose, volatiles composition was determined by GC-MS, and different bioactivities were evaluated. The highest content in terpenes was observed in C. sempervirens (Huéscar origin) followed by J. communis (Almazán origin), corresponding to 92% and 91.9% of total compounds, respectively. With exception of C. ladanifer from Cerezal that presented viridiflorol as the most abundant compound, all the three species presented in common the α-pinene as the major compound. The EOs from C. ladanifer showed high antibacterial potential, presenting MIC values from 0.3 to 1.25 mg/mL. Concerning other bioactivities, C. ladanifer EO revealed an oxidation inhibition of 83%, while J. communis showed cytotoxicity in the MCF-7 cell line, and C. sempervirens and C. ladanifer EOs exhibited the highest potential on NCI-H460 cell lines. Nevertheless, some EOs revealed toxicity against non-tumoral cells but generally presented a GI50 value higher than that of the tumor cell lines.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3469
Author(s):  
Véronique Trézéguet ◽  
Hala Fatrouni ◽  
Aksam J. Merched

Metabolic rewiring in tumor cells is a major hallmark of oncogenesis. Some of the oncometabolites drive suppressive and tolerogenic signals from the immune system, which becomes complicit to the advent and the survival of neoplasia. Tryptophan (TRP) catabolism through the kynurenine (KYN) pathway was reported to play immunosuppressive actions across many types of cancer. Extensive debate of whether the culprit of immunosuppression was the depletion of TRP or rather KYN accumulation in the tumor microenvironment has been ongoing for years. Results from clinical trials assessing the benefit of inhibiting key limiting enzymes of this pathway such as indoleamine 2,3-dioxygenase (IDO1) or tryptophan 2,3-dioxygenase (TDO2) failed to meet the expectations. Bearing in mind the complexity of the tumoral terrain and the existence of different cancers with IDO1/TDO2 expressing and non-expressing tumoral cells, here we present a comprehensive analysis of the TRP global metabolic hub and the driving potential of the process of oncogenesis with the main focus on liver cancers.


Author(s):  
Patricia Jarabo ◽  
Carmen de Pablo ◽  
Amanda González-Blanco ◽  
Sergio Casas-Tintó

Glioblastoma (GB) is the most frequent malignant brain tumor among adults and currently there is no effective treatment. It is a very aggressive tumor that grows fast and spreads through the brain causing the death of patients in 15 months. GB cells mutate frequently and generate a heterogeneous population of tumoral cells genetically distinct. Thus, the contribution of genes and signaling pathways relevant for GB progression is of great relevance. We use a Drosophila model of GB that reproduces the features of human GB, and describe the upregulation of the circadian gene cry in GB patients and in a Drosophila GB model. We study the contribution of cry to the expansion of GB cells, to the neurodegeneration caused by GB, and to premature death and determine that cry is required for GB progression. Moreover, we analyze the mechanisms that regulate cry expression by the PI3K pathway. Finally, we conclude that cry is necessary and sufficient to regulate myc expression in GB. These results contribute to the understanding of the signals that impulse GB malignancy and lethality and open novel opportunities for the treatment of GB patients.


2021 ◽  
Vol 11 (23) ◽  
pp. 11391
Author(s):  
Lorenzo Torrisi ◽  
Letteria Silipigni ◽  
Lubomir Kovacik ◽  
Vasily Lavrentiev ◽  
Mariapompea Cutroneo ◽  
...  

The presented work deals with the uptake of gold nanoparticles (Au NPs) by M13 phages in solutions. In particular, the Au NPs uptake modalities and their localization in the filamentous phages are evaluated and measured. Gold spherical nanoparticles (with an average diameter of the order of 10 nm) are obtained by laser ablation in water with a sodium citrated surfactant. The interest of such application comes from the possibility to employ living biological structures to transport heavy metallic nanoparticles inside cells of tumoral tissues. Indeed, phages have the capability to introduce Au NPs in the proximity to the cell nucleus, increasing the efficiency of DNA destruction in the tumoral cells by employing low doses of ionizing radiation during radiotherapy and hyperthermia treatments. Several analyses and microscopy characterizations of the prepared phages samples embedding gold nanoparticles are presented, demonstrating that the presence of Au NPs increases the phages imaging contrast.


2021 ◽  
Vol 22 (23) ◽  
pp. 12992
Author(s):  
Valentine Suteau ◽  
Mathilde Munier ◽  
Claire Briet ◽  
Patrice Rodien

Differentiated thyroid cancers are more frequent in women than in men. These different frequencies may depend on differences in patient’s behavior and in thyroid investigations. However, an impact on sexual hormones is likely, although this has been insufficiently elucidated. Estrogens may increase the production of mutagenic molecules in the thyroid cell and favor the proliferation and invasion of tumoral cells by regulating both the thyrocyte enzymatic machinery and the inflammatory process associated with tumor growth. On the other hand, the worse prognosis of thyroid cancer associated with the male gender is poorly explained.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6877
Author(s):  
Mahsa Gholizadeh ◽  
Mohammad Amin Doustvandi ◽  
Fateme Mohammadnejad ◽  
Mahdi Abdoli Shadbad ◽  
Habib Tajalli ◽  
...  

Photodynamic therapy (PDT) is a light-based cancer therapy approach that has shown promising results in treating various malignancies. Growing evidence indicates that cancer stem cells (CSCs) are implicated in tumor recurrence, metastasis, and cancer therapy resistance in colorectal cancer (CRC); thus, targeting these cells can ameliorate the prognosis of affected patients. Based on our bioinformatics results, SOX2 overexpression is significantly associated with inferior disease-specific survival and worsened the progression-free interval of CRC patients. Our results demonstrate that zinc phthalocyanine (ZnPc)-PDT with 12 J/cm2 or 24 J/cm2 irradiation can substantially decrease tumor migration via downregulating MMP9 and ROCK1 and inhibit the clonogenicity of SW480 cells via downregulating CD44 and SOX2. Despite inhibiting clonogenicity, ZnPc-PDT with 12 J/cm2 irradiation fails to downregulate CD44 expression in SW480 cells. Our results indicate that ZnPc-PDT with 12 J/cm2 or 24 J/cm2 irradiation can substantially reduce the cell viability of SW480 cells and stimulate autophagy in the tumoral cells. Moreover, our results show that ZnPc-PDT with 12 J/cm2 or 24 J/cm2 irradiation can substantially arrest the cell cycle at the sub-G1 level, stimulate the intrinsic apoptosis pathway via upregulating caspase-3 and caspase-9 and downregulating Bcl-2. Indeed, our bioinformatics results show considerable interactions between the studied CSC-related genes with the studied migration- and apoptosis-related genes. Collectively, the current study highlights the potential role of ZnPc-PDT in inhibiting stemness and CRC development, which can ameliorate the prognosis of CRC patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Stéphane J.C. Mancini ◽  
Karl Balabanian ◽  
Isabelle Corre ◽  
Julie Gavard ◽  
Gwendal Lazennec ◽  
...  

Knowledge about the hematopoietic niche has evolved considerably in recent years, in particular through in vitro analyzes, mouse models and the use of xenografts. Its complexity in the human bone marrow, in particular in a context of hematological malignancy, is more difficult to decipher by these strategies and could benefit from the knowledge acquired on the niches of solid tumors. Indeed, some common features can be suspected, since the bone marrow is a frequent site of solid tumor metastases. Recent research on solid tumors has provided very interesting information on the interactions between tumoral cells and their microenvironment, composed notably of mesenchymal, endothelial and immune cells. This review thus focuses on recent discoveries on tumor niches that could help in understanding hematopoietic niches, with special attention to 4 particular points: i) the heterogeneity of carcinoma/cancer-associated fibroblasts (CAFs) and mesenchymal stem/stromal cells (MSCs), ii) niche cytokines and chemokines, iii) the energy/oxidative metabolism and communication, especially mitochondrial transfer, and iv) the vascular niche through angiogenesis and endothelial plasticity. This review highlights actors and/or pathways of the microenvironment broadly involved in cancer processes. This opens avenues for innovative therapeutic opportunities targeting not only cancer stem cells but also their regulatory tumor niche(s), in order to improve current antitumor therapies.


We performed ,in 1975, the first heterotransplantation of invertebrate A.O in nude mouse, then a double heterotransplantation of human tumor and Axial organ next to this last one, always in nude mouse: The human tumor was rejected in 50% of observed cases. Some years later, we found that A.O cells exerted an induced and spontaneous cytotoxicity against SP2 and MBL2 mouse tumoral cells. Recently, we discovered a sea star Igkappa gene with immune properties. This gene was inserted in a CMV(cytomegalovirus) and finally in a plasmid called « young » plasmid. The induced« young » protein exerted a spontaneous cytotoxicity against osteosarcom cells (U2oS cells) against A-375 melanome cells and Hela cells


Sign in / Sign up

Export Citation Format

Share Document