nude mouse
Recently Published Documents


TOTAL DOCUMENTS

944
(FIVE YEARS 47)

H-INDEX

56
(FIVE YEARS 1)

2021 ◽  
Vol 23 ◽  
pp. 1-13
Author(s):  
Yogesh R. Suryawanshi ◽  
Rebecca A. Nace ◽  
Stephen J. Russell ◽  
Autumn J. Schulze

We performed ,in 1975, the first heterotransplantation of invertebrate A.O in nude mouse, then a double heterotransplantation of human tumor and Axial organ next to this last one, always in nude mouse: The human tumor was rejected in 50% of observed cases. Some years later, we found that A.O cells exerted an induced and spontaneous cytotoxicity against SP2 and MBL2 mouse tumoral cells. Recently, we discovered a sea star Igkappa gene with immune properties. This gene was inserted in a CMV(cytomegalovirus) and finally in a plasmid called « young » plasmid. The induced« young » protein exerted a spontaneous cytotoxicity against osteosarcom cells (U2oS cells) against A-375 melanome cells and Hela cells


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Lanfen An ◽  
Jun Zhang ◽  
Dilu Feng ◽  
Yingchao Zhao ◽  
Weixiang Ouyang ◽  
...  

Endometrial cancer (EC) is commonly diagnosed cancer in women, and the prognosis of advanced types of EC is extremely poor. Kinesin family member 2C (KIF2C) has been reported as an oncogene in cancers. However, its pathophysiological roles and the correlation with tumor-infiltrating lymphocytes in EC remain unclear. The mRNA and protein levels of KIF2C in EC tissues were detected by qRT-PCR, Western blot (WB), and IHC. CCK8, Transwell, and colony formation assay were applied to assess the effects of KIF2C on cell proliferation, migration, and invasion. Cell apoptosis and cell cycle were analyzed by flow cytometry. The antitumor effect was further validated in the nude mouse xenograft cancer model and humanized mouse model. KIF2C expression was higher in EC. Knockdown of KIF2C prolonged the G1 phases and inhibited EC cell proliferation, migration, and invasion in vitro. Bioinformatics analysis indicated that KIF2C is negatively correlated with the infiltration level of CD8+ T cells but positively with the poor prognosis of EC patients. The apoptosis of CD8+ T cell was inhibited after the knockdown of KIF2C and was further inhibited when it is combined with anti-PD1. Conversely, compared to the knockdown of KIF2C expression alone, the combination of anti-PD1 further promoted the apoptosis of Ishikawa and RL95-2 cells. Moreover, the knockdown of KIF2C inhibited the expression of Ki-67 and the growth of tumors in the nude mouse xenograft cancer model. Our study found that the antitumor efficacy was further evaluated by the combination of anti-PD1 and KIF2C knockdown in a humanized mouse model. This study indicated that KIF2C is a novel prognostic biomarker that determines cancer progression and also a target for the therapy of EC and correlated with tumor immune cells infiltration in EC.


Author(s):  
Xiuli Chen ◽  
Feng Liu ◽  
Bin Chen ◽  
Haiying Wu ◽  
Kun Li ◽  
...  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Jian Guan ◽  
Mingyang Liu ◽  
Xin Li ◽  
Liangrui Zhou ◽  
Xueyu Dong ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chao Yuan ◽  
Zhenhong Su ◽  
Shengjie Liao ◽  
Duanzhuo Li ◽  
Zhiwen Zhou ◽  
...  

Abstract Background miR-198 is involved in the formation, migration, invasion, and metastasis of various malignant cancers. However, the function and mechanism of action of miR-198 in the tumorigenesis of renal cell carcinoma (RCC) remain elusive. Here, we aimed to explore the role of miR198 in RCC. Methods Immunohistochemistry was performed to estimate the level of survivin in RCC sections. Quantitative real-time polymerase chain reaction was performed to determine the expression level of miR-198 in fresh RCC tissues. Furthermore, the target relationship between miR-198 and BIRC5 was predicted using the TargetScanHuman 7.2 database and verified via dual-luciferase reporter assay and western blotting. The effects of miR-198 on the viability, apoptosis, invasion, and migration of A498 and ACHN cells were studied using Cell Counting Kit-8, flow cytometry, transwell migration assay, and wound healing assay, respectively. Additionally, a xenograft nude mouse model was established to evaluate the effect of miR-198 on RCC tumorigenesis. Results The expression levels of BIRC5 and miR-198 were respectively higher and lower in RCC tissues than those in normal adjacent tissues. Furthermore, miR-198 could inhibit luciferase activity and reduce the protein level of survivin without affecting the BIRC5 mRNA levels. miR-198 inhibited cell viability, migration, and invasion and promoted cell apoptosis; co-transfection with BIRC5 could rescue these effects. Moreover, miR-198 could repress tumor growth in the xenograft nude mouse model of RCC. Conclusions Our study demonstrates that miR-198 suppresses RCC progression by targeting BIRC5.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chang Liu ◽  
Xiang Zhou ◽  
Yu Pan ◽  
Yang Liu ◽  
Yifan Zhang

Abstract Background Pyruvate carboxylase (PC) is an important anaplerotic enzyme in the tricarboxylic acid cycle (TCA) in cancer cells. Although PC overexpression has been observed in thyroid cancer (TC), the mechanisms involved in the carcinogenic effects of PC are still unclear. Methods Bioinformatics analysis and clinical specimens were used to analyze the relationship of PC expression with clinicopathological variables in TC. Fatty acid synthesis was monitored by LC/MS, Nile red staining, and triglyceride analysis. Mitochondrial oxygen consumption was evaluated by the Seahorse XF Mito Cell Stress Test. The correlation of PC with FASN and SREBP1c was assessed by qRT-PCR and IHC in 38 human TC tissues. Western blotting was used to evaluate the protein expression of PC, FASN, and SREBP1c and members of the AKT/mTOR and EMT pathways in TC cell lines. Wound-healing, CCK-8, and Transwell assays and a nude mouse xenograft model were used to verify the regulatory effects of PC and SREBP1c on thyroid tumor cell proliferation, migration and invasion. Results We demonstrated that PC increased fatty acid synthesis, which then promoted TC progression and metastasis. Analysis of GEO data showed that the overexpression of PC in papillary thyroid cancer (PTC) was associated with PTC invasion and the fatty acid synthesis pathway. Analysis of clinical tissue specimens from PTC patients revealed that PC was more highly expressed in specimens from PTC patients with lymph node metastasis than in those from patients without metastasis. Multiple genes in the fatty acid synthesis signaling pathway, including FASN and SREBP1c, were downregulated in PC-knockdown TC cells compared to control cells. Lipid levels were also decreased in the PC-knockdown TC cells. Moreover, the ability of cells to grow, invade, and metastasize was also suppressed upon PC knockdown, suggesting that PC-mediated lipogenesis activation increases the aggressiveness of TC cells. In addition, PC was found to activate the AKT/mTOR pathway, thus improving FASN-mediated de novo lipogenesis in TC cells by upregulating SREBP1c expression. Studies in a nude mouse xenograft model showed that PC knockdown decreased tumor weight, but this effect was attenuated by forced expression of SREBP1c. Conclusions Our results demonstrate that PC is strongly involved in the tumor aggressiveness of TC via its stimulation of fatty acid synthesis.


Sign in / Sign up

Export Citation Format

Share Document