ganglioside gd3
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 9)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
Vol 22 (22) ◽  
pp. 12194
Author(s):  
Jin Hyoung Cho ◽  
Won Seok Ju ◽  
Sang Young Seo ◽  
Bo Hyun Kim ◽  
Ji-Su Kim ◽  
...  

This study aimed to investigate the effects of the human macrophage (MP) secretome in cellular xenograft rejection. The role of human nucleoside diphosphate kinase A (hNME1), from the secretome of MPs involved in the neuronal differentiation of miniature pig adipose tissue-derived mesenchymal stem cells (mp AD-MSCs), was evaluated by proteomic analysis. Herein, we first demonstrate that hNME1 strongly binds to porcine ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 (pST8SIA1), which is a ganglioside GD3 synthase. When hNME1 binds with pST8SIA1, it induces degradation of pST8SIA1 in mp AD-MSCs, thereby inhibiting the expression of ganglioside GD3 followed by decreased neuronal differentiation of mp AD-MSCs. Therefore, we produced nanobodies (NBs) named NB-hNME1 that bind to hNME1 specifically, and the inhibitory effect of NB-hNME1 was evaluated for blocking the binding between hNME1 and pST8SIA1. Consequently, NB-hNME1 effectively blocked the binding of hNME1 to pST8SIA1, thereby recovering the expression of ganglioside GD3 and neuronal differentiation of mp AD-MSCs. Our findings suggest that mp AD-MSCs could be a potential candidate for use as an additive, such as an immunosuppressant, in stem cell transplantation.


2021 ◽  
Author(s):  
Jing Wang ◽  
Quanguang Zhang ◽  
Yujiao Lu ◽  
Yan Dong ◽  
Krishnan M. Dhandapani ◽  
...  

2020 ◽  
Vol 85 (24) ◽  
pp. 15998-16013
Author(s):  
Miku Konishi ◽  
Naoko Komura ◽  
Yuya Hirose ◽  
Yuki Suganuma ◽  
Hide-Nori Tanaka ◽  
...  
Keyword(s):  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rika Takeuchi ◽  
Mariko Kambe ◽  
Maiko Miyata ◽  
Upul Jeyadevan ◽  
Orie Tajima ◽  
...  

Abstract Analyses of expression and regulation of ganglioside synthases in melanocytes are important to understand roles of gangliosides in melanomagenesis. In this study, we analyzed the expression and regulatory mechanisms of glycosyltransferase genes responsible for ganglioside synthesis in normal melanocytes. We reported previously that culture supernatants of UVB-irradiated keratinocytes induced upregulation of ganglioside GD3 synthase gene in melanocytes, and mainly TNFα was responsible for it. Then, we found that elimination of dibutyryl cyclic AMP and IBMX from the medium also resulted in upregulation of the GD3 synthase gene. The addition of α-melanocyte-stimulating hormone which increases cAMP, to the medium led to a significant reduction in the GD3 synthase gene expression level, and a PKA inhibitor enhanced the GD3 synthase gene level. These results suggest that signals mediated via TNFα and cAMP oppositely regulate GD3 synthase gene expression in melanocytes. The results of an IKK inhibitor indicate the possibility that TNFα induces GD3 synthase gene expression via NF-κB signaling in melanocytes. When melanoma cells were treated by these factors, no fluctuation in the GD3 synthase gene expression level was observed, although an IKK inhibitor significantly suppressed it, suggesting that ganglioside synthase genes are regulated in distinct manners between melanocytes and melanomas.


ASN NEURO ◽  
2019 ◽  
Vol 11 ◽  
pp. 175909141988485
Author(s):  
Yutaka Itokazu ◽  
Dongpei Li ◽  
Robert K. Yu

We previously reported that ganglioside GD3 is the predominant species in neural stem cells (NSCs) and reduced postnatal NSC pools are observed in both the subventricular zone and dentate gyrus (DG) of GD3-synthase knockout (GD3S-KO) mouse brains. Specifically, deficiency of GD3 in GD3S-KO animals revealed a dramatic reduction in cellularity in the DG of the hippocampus of the developing mouse brain, resulting in severe behavioral deficits in these animals. To further evaluate the functional role of GD3 in postnatal brain, we performed rescue experiments by intracerebroventricular infusion of ganglioside GD3 in adult GD3S-KO animals and found that it could restore the NSC pools and enhance the NSCs for self-renewal. Furthermore, 5xFAD mouse model was utilized, and GD3 restored NSC numbers and GM1 promoted neuronal differentiation. Our results thus demonstrate that exogenously administered gangliosides are capable to restore the function of postnatal NSCs. Since ganglioside expression profiles are associated not only with normal brain development but also with pathogenic mechanisms of diseases, such as Alzheimer’s disease, we anticipate that the administration of exogenous gangliosides, such as GD3 and GM1, may represent a novel and effective strategy for promoting adult neurogenesis in damaged brain for disease treatment.


Contact ◽  
2019 ◽  
Vol 2 ◽  
pp. 251525641983871
Author(s):  
Hana Kimura ◽  
Kohei Arasaki ◽  
Moe Iitsuka ◽  
Mitsuo Tagaya

During lipid droplet (LD) formation, several key enzymes for neutral lipid biosynthesis, such as acyl-CoA synthetase 3 (ACSL3), translocate from the bilayer of the endoplasmic reticulum membrane or mitochondria-associated membrane to the monolayer surface of LDs. It has been recently shown that syntaxin 17 (Stx17) in cooperation with synaptosomal-associated protein of 23 kDa (SNAP23) facilitates the translocation of ACSL3 from the endoplasmic reticulum/mitochondria-associated membrane to LDs. In this study, we investigated whether lipid microdomains enriched in cholesterol and sphingolipids are important for the formation of LDs and the interaction of Stx17 with ACSL3 and SNAP23. Cholesterol depletion and blockage of ceramide synthesis by chemicals inhibited oleic acid (OA)-induced LD biogenesis and decreased the interaction of Stx17 with ACSL3 and SNAP23, whereas blockage of ganglioside GD3 synthesis by sialyltransferase knockdown interfered with LD biogenesis by affecting the interaction of Stx17 with SNAP23 but not ACSL3. Consistent with the requirement of GD3 in LD biogenesis, Stx17 was found to associate with GD3-containing membranes upon OA loading. SNAP23 and a minor fraction of Stx17 were found to reside in detergent-resistant membranes (DRMs), whereas OA treatment caused redistribution of ACSL3 and Stx17 to DRMs. Importantly, the redistribution of ACSL3 to DRMs was abrogated upon depletion of Stx17 or SNAP23. Taken together, our results highlight the importance of lipid microdomains enriched in cholesterol and sphingolipids as a platform for the interaction of Stx17 with ACSL3 and SNAP23 in LD biogenesis.


2018 ◽  
Vol 201 (12) ◽  
pp. 3750-3758 ◽  
Author(s):  
Gautam N. Shenoy ◽  
Jenni Loyall ◽  
Charles S. Berenson ◽  
Raymond J. Kelleher ◽  
Vandana Iyer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document