correlation skill
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Tongtiegang Zhao ◽  
Haoling Chen ◽  
Quanxi Shao

Abstract. Climate teleconnections are essential for the verification of valuable precipitation forecasts generated by global climate models (GCMs). This paper develops a novel approach to attributing correlation skill of dynamical GCM forecasts to statistical El Niño-Southern Oscillation (ENSO) teleconnection by using the coefficient of determination (R2). Specifically, observed precipitation is respectively regressed against GCM forecasts, Niño3.4 and both of them and then the intersection operation is implemented to quantify the overlapping R2 for GCM forecasts and Niño3.4. The significance of overlapping R2 and the sign of ENSO teleconnection facilitate three cases of attribution, i.e., significantly positive anomaly correlation attributable to positive ENSO teleconnection, attributable to negative ENSO teleconnection and not attributable to ENSO teleconnection. A case study is devised for the Climate Forecast System version 2 (CFSv2) seasonal forecasts of global precipitation. For grid cells around the world, the ratio of significantly positive anomaly correlation attributable to positive (negative) ENSO teleconnection is respectively 10.8 % (11.7 %) in December-January-February (DJF), 7.1 % (7.3 %) in March-April-May (MAM), 6.3 % (7.4 %) in June-July-August (JJA) and 7.0 % (14.3 %) in September-October-November (SON). The results not only confirm the prominent contributions of ENSO teleconnection to GCM forecasts, but also present spatial plots of regions where significantly positive anomaly correlation is subject to positive ENSO teleconnection, negative ENSO teleconnection and teleconnections other than ENSO. Overall, the proposed attribution approach can serve as an effective tool to investigate the source of predictability for GCM seasonal forecasts of global precipitation.


2020 ◽  
Vol 59 (2) ◽  
pp. 317-332
Author(s):  
Nicky Stringer ◽  
Jeff Knight ◽  
Hazel Thornton

AbstractRecent advances in the skill of seasonal forecasts in the extratropics during winter mean they could offer improvements to seasonal hydrological forecasts. However, the signal-to-noise paradox, whereby the variability in the ensemble mean signal is lower than would be expected given its correlation skill, prevents their use to force hydrological models directly. We describe a postprocessing method to adjust for this problem, increasing the size of the predicted signal in the large-scale circulation. This reduces the ratio of predictable components in the North Atlantic Oscillation (NAO) from 3 to 1. We then derive a large ensemble of daily sequences of spatially gridded rainfall that are consistent with the seasonal mean NAO prediction by selecting historical observations conditioned on the adjusted NAO forecasts. Over northern and southwestern Europe, where the NAO is strongly correlated with winter mean rainfall, the variability of the predicted signal in the adjusted rainfall forecasts is consistent with the correlation skill (they have a ratio of predictable components of ~1) and are as skillful as the unadjusted forecasts. The adjusted forecasts show larger predicted deviations from climatology and can be used to better assess the risk of extreme seasonal mean precipitation as well as to force hydrological models.


2017 ◽  
Vol 145 (2) ◽  
pp. 437-450 ◽  
Author(s):  
Stefan Siegert ◽  
Omar Bellprat ◽  
Martin Ménégoz ◽  
David B. Stephenson ◽  
Francisco J. Doblas-Reyes

The skill of weather and climate forecast systems is often assessed by calculating the correlation coefficient between past forecasts and their verifying observations. Improvements in forecast skill can thus be quantified by correlation differences. The uncertainty in the correlation difference needs to be assessed to judge whether the observed difference constitutes a genuine improvement, or is compatible with random sampling variations. A widely used statistical test for correlation difference is known to be unsuitable, because it assumes that the competing forecasting systems are independent. In this paper, appropriate statistical methods are reviewed to assess correlation differences when the competing forecasting systems are strongly correlated with one another. The methods are used to compare correlation skill between seasonal temperature forecasts that differ in initialization scheme and model resolution. A simple power analysis framework is proposed to estimate the probability of correctly detecting skill improvements, and to determine the minimum number of samples required to reliably detect improvements. The proposed statistical test has a higher power of detecting improvements than the traditional test. The main examples suggest that sample sizes of climate hindcasts should be increased to about 40 years to ensure sufficiently high power. It is found that seasonal temperature forecasts are significantly improved by using realistic land surface initial conditions.


2009 ◽  
Author(s):  
Hartmut H. Aumann ◽  
Evan Manning ◽  
Chris Barnet ◽  
Eric Maddy ◽  
William Blackwell

Sign in / Sign up

Export Citation Format

Share Document