forming defects
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 34)

H-INDEX

10
(FIVE YEARS 2)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 166
Author(s):  
Jiansheng Xia ◽  
Jun Zhao ◽  
Shasha Dou

There are many typical symmetric large plastic deformation problems in aluminum alloy stamping. Warm stamping technology can improve the formability of materials and obtain parts with high-dimensional accuracy. Friction behavior in the stamping process is significant for the forming quality. An accurate friction coefficient is helpful in improving the prediction accuracy of forming defects. It is hard to obtain a unified and precise friction model through simple experiments due to the complicated contact conditions. To explore the effect of friction behavior on the forming quality, warm friction experiments of the AA6061 aluminum alloy and P20 steel with different process parameters were carried out using a high-temperature friction tester CFT-I (Equipment Type), including temperatures, the interface load, and sliding speeds. The variation curves of the friction coefficient with various parameters were obtained and analyzed. The results show that the friction coefficient increases with temperature and decreases with the sliding speed and load. Then, the influences of process parameters on the surface morphology of the samples after friction were observed by an optical microscope; adhesive wear occurred when the temperature increased, and the surface scratch increased and deepened with the increase in the load. Finally, the friction coefficient models of the speed and load were established by analyzing the data with Original software. Compared with the experimental and the finite element analysis results of the symmetrical part, the errors of the velocity friction model in thickness and springback angle are less than 4% and 5%, respectively. The mistakes of the load friction model are less than 6% and 7%, respectively. The accuracy of the two friction models is higher than that of the constant friction coefficient. Therefore, those coefficient models can effectively improve the simulation accuracy of finite element software.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Guangda Shao ◽  
Hongwei Li ◽  
Mei Zhan

AbstractCompared with conventional forming processes, ultrasonic-assisted forming technology with a high frequency and small amplitude can significantly improve the forming quality of materials. Owing to the advantages of reduced forming force, improved surface quality, avoidance of forming defects, and strengthened surface structure, ultrasonic-assisted forming technology has been applied to increasingly advanced forming processes, such as incremental forming, spinning, and micro-forming. However, in the ultrasonic-assisted forming process, there are multiple ultrasonic mechanisms, such as the volume effect and surface effect. The explanation of the effect of ultrasonic vibration (UV) on plastic deformation remains controversial, hindering the development of related technologies. Recently, many researchers have proposed many new theories and technologies for ultrasonic-assisted forming. To summarize these developments, systematic discussions on mechanisms, theoretical models, and forming performances are provided in this review. On this basis, the limitations of the current study are discussed. In addition, an outlook for ultrasonic-assisted forming is proposed: efficient and stable UV systems, difficulty forming components with complex geometry, explanation of the in-depth mechanism, a systematic theoretical prediction model, and multi-field-coupling energy-assisted forming are considered to be hot spots in future studies. The present review enhances existing knowledge of ultrasonic-assisted forming, and facilitates a fast reference for related researchers.


2021 ◽  
Vol 11 (18) ◽  
pp. 8295
Author(s):  
Gunyoung Park ◽  
Rockkyu Park ◽  
Hyoseo Kwak ◽  
Chul Kim

The liner of a compressed natural gas pressure vessel is manufactured by D.D.I. (Deep Drawing and Ironing), which is a continuous process that uses deep drawing to reduce the diameter of a billet and ironing to reduce the thickness of the billet. In the second stage of the existing D.D.I. process, drawing and two steps of ironing have been performed separately with different dies, which requires a long processing time, high manufacturing cost, and installation space. To solve the above problems, this study suggests a new second stage using a combined redrawing-ironing die. A theoretical formula to calculate the forming load of the combined redrawing-ironing process was established and verified with finite element analysis results. The forming load, maximum thickness reduction ratio in the second stage, and forming defects in the third stage were analyzed by varying the redrawing-ironing ratio in the second stage. The results show that the number of dyes (3 → 1), punch diameter (394.1 mm → 383 mm), and processing time (39.8 s → 20 s) in the second stage were obtained to save production time and cost.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1111
Author(s):  
Xiangji Li ◽  
Xu Yan ◽  
Zhiqiang Zhang ◽  
Mingwen Ren ◽  
Hongjie Jia

Aluminum alloy hot stamping technology can improve the formability of materials and obtain parts with high dimensional accuracy. Friction behavior in the hot stamping process is very important for forming quality. Accurate friction coefficient is helpful to improve the prediction accuracy of forming defects. It is hard to obtain the friction coefficient by simple experiments due to the complicated thermal–mechanical coupling and contact conditions during the hot stamping of aluminum alloys. In order to explore the effect of friction behavior on forming quality, hot stamping experiments of 7075 aluminum alloy U-shaped parts with different lubricants were carried out. The influence of different lubricants on the force–displacement curve, material inflow, surface appearance, and thickness distribution of the formed part was analyzed. The results showed that a good lubrication effect could be obtained with the molybdenum disulfide lubricant. The friction coefficient under different lubrication conditions was obtained by using the inverse problem optimization method. Compared with the experimental results, the determined friction coefficients could accurately predict the force–displacement curves and the thickness distributions of formed parts under different lubrication conditions.


2021 ◽  
Vol 13 (6) ◽  
pp. 168781402110280
Author(s):  
Jie Huang ◽  
You-xi Lin ◽  
Wei-ping Chen ◽  
Xian-jun Qi

Large-caliber water meter shells are prone to shrinkage porosity, wrinkles, air entrapment, slag inclusion, and other defects during the lost foam casting process. Taking the vertical spiral wing WS-100 water meter as the research object, through the analysis of the structure of the water meter shell, the flow field and temperature field of the design of outer bottom injection-vertical pouring, outer bottom injection-horizontal pouring and inner bottom injection-horizontal pouring involved in the filling and solidification process are numerically simulated and solve analysis, respectively. The results showed that: when the inner bottom injection-horizontal pouring process was adopted, the filling process of the casting was stable, the isolated liquid phase area of the solidification process was relatively small, and the possibility of forming defects was less. The casting performance is excellent, and the numerical analysis is verified to be effective.


2021 ◽  
Author(s):  
Longfei Lin ◽  
Baoyu Wang ◽  
Jing Zhou ◽  
Jinxia Shen

Abstract When manufacturing large shafts with multi-specification and small-batch production, both the conventional forging and rolling process bring a high tooling cost due to heavy forging press or large-size specialized roller. In this study, a novel flexible skew rolling (FSR) process is proposed by adding degrees of freedom to the rollers as compared to the typical skew rolling process. Since each of the FSR rollers has three degrees of freedom (circle rotating, radial rotating and radial feeding), the FSR process can be divided into four stages: radial rolling, rollers inclining, skew rolling and rollers levelling. Therefore, the FSR process can produce various shafts with same rollers via programming different movements. To verify the feasibility of FSR process, a physical investigation corresponding with a numerical simulation for a single-step shaft is undertaken with a Φ80×390 mm C45 steel billet. According to the results from physical experiments and numerical simulations, the FSR formed shaft has a maximum deviation of 0.99 mm, and its microstructure and properties have been improved obviously. Moreover, although there is a tendency of center crack in FSR products as predicted by numerical results, both the transverse and longitudinal section of the physical shaft are free from central cracking. The major forming defects existed on the rolled shaft are knurled pockmarks, surface threads and side cavity, which are the typical defects of the conventional skew rolling and cross-wedge rolling and can be removed by machining. To the authors’ knowledge, this novel process has a good combination of flexible production and less loading, which will be of great engineering significance to reduce the tooling cost in large shafts manufacturing.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 675
Author(s):  
Xi Zhang ◽  
Qingmin Chen ◽  
Jiaxin Gao ◽  
Mingwei Wang ◽  
Ya Zhang ◽  
...  

This paper presents a numerical investigation on the plastic forming of doubly curved surfaces of aluminum foam sandwich panel (AFSP). A mesoscopic 3D Voronoi model that can describe the structure of closed-cell aluminum foam relatively realistically was established, and a series of numerical simulations using the model of the sandwich panel with a Voronoi foam core were conducted on the plastic forming of two typical doubly curved surfaces including spherical and saddle-shaped surfaces of AFSPs to analyze the deformation behaviors and the forming defects in detail. Multi-point forming experiments of spherical and saddle-shaped AFSPs with different target radii were implemented and the doubly curved panels with good forming quality were obtained. The simulated results of the surface illumination maps, the face sheet profiles, and the maximum strain differences in selected areas of the face sheet and the experimental results indicated that the Voronoi AFSP model can reflect the actual defects occurred in the plastic forming of doubly curved sandwich panels, and the high forming accuracy of the sandwich panel model was also demonstrated in terms of the shape error and the thickness variation.


Sign in / Sign up

Export Citation Format

Share Document