external cylindrical grinding
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 16)

H-INDEX

6
(FIVE YEARS 2)

Author(s):  
Tuan-Linh Nguyen

The selection of the optimal external cylindrical grinding conditions importantly contributes to increase of productivity and quality of the products. The external cylindrical grinding is a method of finishing machine elements surface with an indeterminate blade shape. External cylindrical grinding can process surfaces that require high gloss and precision, although it can also be used to remove large surplus stock. Therefore, multi objective optimization for the external cylindrical grinding process is a problem with high complexity. In this study, an experimental study was performed to improve the productivity and quality of grinding process. By using the experimental date, the surface roughness, cutting force, and vibrations were modeled. To achieve the minimum value of surface roughness and maximum value of material removal rate, the optimal values of external cylindrical grinding conditions were determined by using the combination of Genetic Algorithms (GAs) and weighting method. The optimum values of surface roughness and material removal rate are 0.510 μm and 5.906 mm2/s, respectively. The obtained optimal values of cutting parameters were a feed rate of 0.3 mm/rev, a workpiece speed of 188.1 rpm, a cutting depth of 0.015 mm, and a workpiece Rockwell hardness of 54.78 HRC. The optimal values of cutting parameters, and workpiece hardness were successfully verified by comparing of experimental and predicted results. The approach method of this study can be applied in industrial machining to improve the productivity and quality of the products in external cylindrical grinding process of the T1 tool steel


2020 ◽  
Vol 34 (22n24) ◽  
pp. 2040161
Author(s):  
Tuan-Linh Nguyen ◽  
Nhu-Tung Nguyen ◽  
Long Hoang

In this study, by performing the experimental research, the surface roughness, cutting force and vibration were modeled. The Genetic Algorithms (GAs) were applied to determine the optimal values of external cylindrical grinding conditions to achieve the minimum value of surface roughness and the maximum value of the material removal rate. The optimum values of surface roughness and material removal rate are 0.490 [Formula: see text]m and 3.974 mm2/s, respectively, that were obtained at a feed rate of 0.3 m/min, at a workpiece speed of 164.82 rpm, at a cutting depth of 0.015 mm, and a workpiece Rockwell hardness of 56.32 HRC. The optimal values were successfully verified by experimental results with very promising results.


2020 ◽  
Vol 34 (22n24) ◽  
pp. 2040150 ◽  
Author(s):  
Tuan-Linh Nguyen ◽  
Nhu-Tung Nguyen ◽  
Long Hoang

The vibration during external cylindrical grinding is caused by many factors such as the rigidity of the technology system, machining modes, machining materials, cooling mode, etc. This paper employed a Taguchi method to design experiments and evaluate the influence of machining mode parameters and workpiece material hardness on the vibrations when machining some types of alloy steel in external cylindrical grinding process. The influence of machining conditions on the vibrations was investigated. Besides, the mathematical models of vibration amplitudes were also modeled. The achieved results can be used to control the vibrations through machining conditions to improve the surface quality of the product.


2020 ◽  
Vol 977 ◽  
pp. 18-26
Author(s):  
Thi Hong Tran ◽  
Xuan Tu Hoang ◽  
Hong Ky Le ◽  
Quoc Tuan Nguyen ◽  
Thanh Tu Nguyen ◽  
...  

Grinding cost is an essential factor in a grinding process. In external cylindrical grinding, there has been an absence of various input grinding process parameters which have significant effects on the grinding cost. This paper presents an optimization of the grinding cost to determine the optimum exchanged grinding wheel diameter based on the seven input grinding parameters consisting of the initial grinding wheel diameter, the grinding wheel width, the wheel life, the radial grinding wheel wear per dress, the total depth of dressing cut, the machine tool hourly rate, and the grinding wheel cost. Combined with the screening experiments, the influence of the grinding parameters on the optimum exchanged grinding wheel diameter for the external cylindrical grinding process was examined. In addition, the effect of the interactions between the input grinding parameters was also evaluated. Finally, the regression equation for computing the optimum exchanged grinding wheel diameter was introduced. Therefore, the proposed model can be further applied for the external grinding process effectively.


Sign in / Sign up

Export Citation Format

Share Document