surrounding seawater
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 22)

H-INDEX

12
(FIVE YEARS 2)

Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 683
Author(s):  
Simona Fenizia ◽  
Jerrit Weissflog ◽  
Georg Pohnert

Phytoplankton rely on bioactive zwitterionic and highly polar small metabolites with osmoregulatory properties to compensate changes in the salinity of the surrounding seawater. Dimethylsulfoniopropionate (DMSP) is a main representative of this class of metabolites. Salinity-dependent DMSP biosynthesis and turnover contribute significantly to the global sulfur cycle. Using advanced chromatographic and mass spectrometric techniques that enable the detection of highly polar metabolites, we identified cysteinolic acid as an additional widely distributed polar metabolite in phytoplankton. Cysteinolic acid belongs to the class of marine sulfonates, metabolites that are commonly produced by algae and consumed by bacteria. It was detected in all dinoflagellates, haptophytes, diatoms and prymnesiophytes that were surveyed. We quantified the metabolite in different phytoplankton taxa and revealed that the cellular content can reach even higher concentrations than the ubiquitous DMSP. The cysteinolic acid concentration in the cells of the diatom Thalassiosira weissflogii increases significantly when grown in a medium with elevated salinity. In contrast to the compatible solute ectoine, cysteinolic acid is also found in high concentrations in axenic algae, indicating biosynthesis by the algae and not the associated bacteria. Therefore, we add this metabolite to the family of highly polar metabolites with osmoregulatory characteristics produced by phytoplankton.


Coral Reefs ◽  
2021 ◽  
Author(s):  
Gabriela A. Farfan ◽  
Amy Apprill ◽  
Anne Cohen ◽  
Thomas M. DeCarlo ◽  
Jeffrey E. Post ◽  
...  

AbstractCorals nucleate and grow aragonite crystals, organizing them into intricate skeletal structures that ultimately build the world’s coral reefs. Crystallography and chemistry have profound influence on the material properties of these skeletal building blocks, yet gaps remain in our knowledge about coral aragonite on the atomic scale. Across a broad diversity of shallow-water and deep-sea scleractinian corals from vastly different environments, coral aragonites are remarkably similar to one another, confirming that corals exert control on the carbonate chemistry of the calcifying space relative to the surrounding seawater. Nuances in coral aragonite structures relate most closely to trace element chemistry and aragonite saturation state, suggesting the primary controls on aragonite structure are ionic strength and trace element chemistry, with growth rate playing a secondary role. We also show how coral aragonites are crystallographically indistinguishable from synthetic abiogenic aragonite analogs precipitated from seawater under conditions mimicking coral calcifying fluid. In contrast, coral aragonites are distinct from geologically formed aragonites, a synthetic aragonite precipitated from a freshwater solution, and mollusk aragonites. Crystallographic signatures have future applications in understanding the material properties of coral aragonite and predicting the persistence of coral reefs in a rapidly changing ocean.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012167
Author(s):  
V V Loshchenkov ◽  
V V Knyazhev

Abstract A modular automatic sea transport for the delivery of clean drinking fresh water has been proposed. Transport can be in underwater and surface versions. The transported fresh water and the surrounding seawater can be used as a source of energy for the movement and control of vehicles. Power plants based on osmosis or reverse electrodialysis are considered, as well as their possible joint use of plants of both types.


2021 ◽  
Vol 156 ◽  
pp. 106724
Author(s):  
Guozhu Ye ◽  
Xu Zhang ◽  
Changzhou Yan ◽  
Yi Lin ◽  
Qiansheng Huang

2021 ◽  
Vol 9 (9) ◽  
pp. 1909
Author(s):  
Dandi Hou ◽  
Man Hong ◽  
Yanting Wang ◽  
Pengsheng Dong ◽  
Huangwei Cheng ◽  
...  

As microplastic pollution continues to increase, an emerging threat is the potential for microplastics to act as novel substrates and/or carriers for pathogens. This is of particular concern for aquatic product safety given the growing evidence of microplastic ingestion by aquaculture species. However, the potential risks of pathogens associated with microplastics in mariculture remain poorly understood. Here, an in situ incubation experiment involving three typical microplastics including polyethylene terephthalate (PET), polyethylene (PE), and polypropylene (PP) was conducted during the summer–autumn period in a mariculture cage. The identification of potential pathogens based on the 16S rRNA gene amplicon sequencing and a custom-made database for pathogenic bacteria involved in aquatic environments, was performed to assess the risks of different microplastics attaching potential pathogens. The enrichment of pathogens was not observed in microplastic-associated communities when compared with free-living and particle-attached communities in surrounding seawater. Despite the lower relative abundance, pathogens showed different preferences for three microplastic substrates, of which PET was the most favored by pathogens, especially potentially pathogenic members of Vibrio, Tenacibaculum, and Escherichia. Moreover, the colonization of these pathogens on microplastics was strongly affected by environmental factors (e.g., temperature, nitrite). Our results provide insights into the ecological risks of microplastics in mariculture industry.


2021 ◽  
Vol 8 ◽  
Author(s):  
Silvia Arossa ◽  
Alan Barozzi ◽  
Matteo Callegari ◽  
Shannon G. Klein ◽  
Anieka J. Parry ◽  
...  

The characterization of the internal microenvironment of symbiotic marine invertebrates is essential for a better understanding of the symbiosis dynamics. Microalgal symbionts (of the family: Symbiodiniaceae) influence diel fluctuations of in host O2 and pH conditions through their metabolic activities (i.e., photosynthesis and respiration). These variations may play an important role in driving oxygen budgets and energy demands of the holobiont and its responses to climate change. In situ measurements using microsensors were used to resolve the O2 and pH diel fluctuations in the oral arms of non-calcifying cnidarian model species Cassiopea sp. (the “upside-down jellyfish”), which has an obligatory association with Symbiodiniaceae. Before sunrise, the internal O2 and pH levels were substantially lower than those in ambient seawater conditions (minimum average levels: 61.92 ± 5.06 1SE μmol O2 L–1 and 7.93 ± 0.02 1SE pH units, respectively), indicating that conditions within Cassiopea’s oral arms were acidified and hypoxic relative to the surrounding seawater. Measurements performed during the afternoon revealed hyperoxia (maximum average levels: 546.22 ± 16.45 1SE μmol O2 L–1) and internal pH similar to ambient levels (8.61 ± 0.02 1SE pH units). The calculated gross photosynthetic rates of Cassiopea sp. were 0.04 ± 0.013 1SE nmol cm–2 s–1 in individuals collected at night and 0.08 ± 0.02 1SE nmol cm–2 s–1 in individuals collected during the afternoon.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11638
Author(s):  
Bailey R. Fallon ◽  
Christopher J. Freeman

Microplastics (MP) are now considered ubiquitous across global aquatic environments. The ingestion of MP by fish and other marine vertebrates is well studied, but the ingestion of MP by marine invertebrates is not. Sponges (Phylum Porifera) are particularly understudied when it comes to MP ingestion, even though they are widely distributed across benthic habitats, can process large volumes of seawater, and can retain small particles within their water filtration systems. This study examines the presence of potential MP (PMP) in wild marine sponges and seawater collected in Bocas del Toro, Panamá. Subsurface seawater and tissue from six common Caribbean sponge species was collected in Saigon Bay, a heavily impacted, shallow-water coral reef. Seawater samples were filtered onto glass fiber filters to retain any PMP present and sponge tissue was digested with bleach, heated and filtered. Filters were examined using fluorescence microscopy to quantify PMP. An average of 107 ± 25 PMP L–1 was detected in seawater from Saigon Bay with particles ranging in size between 10 μm and ~3,000 μm. The number of PMP found in sponge tissue ranged between 6 ± 4 and 169 ± 71 PMP g–1 of dry tissue. Most particles found in sponge samples were very small (10–20 μm), but fibers greater than 5,000 μm were detected. Our results indicate that PMP exists within the tissues of the sponges we studied, but future studies should confirm the presence of MP in sponges using chemical analysis. Most importantly, the discrepancy between low levels of PMP in our sponge samples and high levels in the surrounding seawater highlights the potential for sponges to resist and/or egest MP. Finally, we provide a critical evaluation of our methods to improve their use in future MP work with benthic marine organisms.


2021 ◽  
Vol 9 (6) ◽  
pp. 1291
Author(s):  
Arsalan Ahmed ◽  
Anam Khurshid ◽  
Xianghai Tang ◽  
Junhao Wang ◽  
Tehsin Ullah Khan ◽  
...  

Pyropia yezoensis is the most important commercial edible red algae in China, carrying a variety of resident microbes at its surface. To understand microbiome diversity, community structure, interactions and functions with hosts in this regard, thalli and seawater sampleswere collected from Yantai and Rizhao cultivation farms in the Yellow Sea. The thalli and seawater samples (n = 12) were collected and studied using an Illumina NovaSeq 6000 platform and 16S ribosomal RNA (rRNA) gene sequencing, along with the consideration of environmental factors. Bacterial communities in association with P. yezoensis and surrounding seawater were predominated by Cyanobacteria, Proteobacteria, and Bacteroidetes. The variability of bacterial communities related to P. yezoensis and seawater were predominantly shaped by nitrate (NO3), ammonium (NH4), and temperature. Cluster analysis revealed a close relationship between thalli (RTH and YTH) and seawater (RSW and YSW) in terms of the residing bacterial communities, respectively. PICRUSt analysis revealed the presence of genes associated with amino acid transportation and metabolism, which explained the bacterial dependence on algal-provided nutrients. This study reveals that the diversity of microbiota for P. yezoensis is greatly influenced by abiotic factors and algal organic exudates which trigger chemical signaling and transportation responses from the bacterial community, which in turn activates genes to metabolize subsequent substrates.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sambhaji Mote ◽  
Vishal Gupta ◽  
Kalyan De ◽  
Afreen Hussain ◽  
Kuldeep More ◽  
...  

Marginal reefs are known for severe stress-inducible perturbations such as high sedimentation, eutrophication, ocean warming, and acidification from anthropogenic climate change. The corals striving in such stressful environments develop physiological adaptations induced by differential genomic expressions or association with thermal stress-tolerant algal symbionts (Symbiodiniaceae). Despite such adaptations, corals are threatened by other space competitors such as algae and sponges. Coral-eroding sponges belonging to the Cliona viridis complex are one such space competitors that also associate with Symbiodiniaceae algal photosymbiont. The diversity of Symbiodiniaceae associates with the coral and sponge from the same ecosystems is scarcely known. In the present study, Symbiodiniaceae community structure in the coral Turbinaria mesenterina, a newly described coral-eroding sponge Cliona thomasi, and their surrounding seawater was determined from the nearshore marginal reef along the central west coast of India. The results revealed a significantly higher relative abundance of Durusdinium and Gerakladium than Symbiodinium and Cladocopium in the seawater. Interestingly, both investigated host species showed differential Symbiodiniaceae association with significantly higher abundance of Durusdinium in coral and Gerakladium in sponge. The beta diversity analysis by Permutational multivariate analysis of variance (PERMANOVA) confirmed significant differences in Symbiodiniaceae profiles between sponge and coral. Durusdinium and Gerakladium are thermotolerant genera known to associate with different hosts in suboptimal conditions. Our field surveys suggested the bleaching resistance of the coral T. mesenterina despite the fact that the sea surface temperature reached the coral thermal threshold of 31°C during different periods of the years 2015, 2016, 2017, 2018, and 2019. Therefore, the thermal tolerance of the investigated coral and sponge species may be attributed to their respective thermotolerant photosymbiont associations. Furthermore, the results also indicated the host-specific photosymbiont selection from the local environment. Although these observations provide valuable biological insight, more research is needed to understand the tripartite association of sponge-coral-symbiont together to evaluate the competitive fitness of holobionts.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zhe Zheng ◽  
Yongshan Liao ◽  
Jianming Ye ◽  
Chuangye Yang ◽  
Linda Adzigbli ◽  
...  

Environmental microbiota plays a vital role in the intestinal microbiota of aquatic organisms. However, data concerning the association between the intestinal microbiota of pearl oyster Pinctada fucata martensii and the surrounding seawater are limited. The existing bacterial communities in pearl oyster intestine and surrounding water from two sites (D and H, within Liusha Bay in Guangdong, China) were investigated using 16S rRNA-based sequencing to explore the relationship among the two. D located in the inner bay, and H located in the open sea area outside bay. Results revealed the richness and diversity of pearl oyster intestinal microbiota to be less than those of the surrounding water, with 38 phyla and 272 genera observed as a result of the classifiable sequence. The microbiota compositions in the intestine and the surrounding water were diversified at the phylum and genus levels, with the sequencing data being statistically significant. However, the functional prediction of microbiota emphasized the overall similarity in the functional profile of the surrounding seawater and intestinal microbiomes. This profile was associated with metabolism of cofactors and vitamin, carbohydrates metabolism, amino acids metabolism, metabolism of terpenoids, and polyketides, metabolism of other amino acids, lipids metabolism, and energy metabolism. Seven common operational taxonomic units (OTUs), which belonged to phyla Tenericutes, Cyanobacteria, and Planctomycetes, were noted in the intestines of pearl oysters from two different sites. These OTUs may be affiliates to the core microbiome of pearl oyster. Significantly different bacterial taxa in the intestines of pearl oysters from two different sites were found at the phylum and genus levels. This finding suggested that the bacterial communities in pearl oyster intestines may exhibit some plasticity to adapt to changes in the surrounding water-cultured environment. This study generally offers constructive discoveries associated with pearl oyster intestinal microbiota and provides guidance for sustainable aquaculture.


Sign in / Sign up

Export Citation Format

Share Document